Neurological Outcome of Patients with Late-onset Ornithine Transcarbamylase Deficiency

지발형 오르니틴 트랜스카바미라제 결핍증 환자들의 신경학적 예후

  • Jang, Kyung Mi (Department of Pediatrics, Yeungnam University School of Medicine, Yeungnam University Hospital) ;
  • Hwang, Su-Kyeong (Department of Pediatrics, School of Medicine, Kyungpook National University)
  • 장경미 (영남대학교병원 소아청소년과) ;
  • 황수경 (경북대학교 어린이병원 소아청소년과)
  • Published : 2022.06.30

Abstract

The most common urea cycle disorder is ornithine transcarbamylase deficiency. More than 80 percent of patients with symptomatic ornithine transcarbamylase deficiency are late-onset, which can present various phenotypes from infancy to adulthood. With no regards to the severity of the disease, characteristic fluctuating courses due to hyperammonemia may develop unexpectedly, and can be precipitated by various metabolic stressors. Late-onset ornithine transcarbamylase deficiency is not merely related to a type of genetic variation, but also to the complex relationship between genetic and environmental factors that result in hyperammonemia; therefore, it is difficult to predict the prevalence of neurological symptoms in late-onset ornithine transcarbamylase deficiency. Most common acute neurological manifestations include psychological changes, seizures, cerebral edema, and death; subacute neurological manifestations include developmental delays, learning disabilities, intellectual disabilities, attention-deficit/hyperactivity disorder, executive function deficits, and emotional and behavioral problems. This review aims to increase awareness of late-onset ornithine transcarbamylase deficiency, allowing for an efficient use of biochemical and genetic tests available for diagnosis, ultimately leading to earlier treatment of patients.

Keywords

References

  1. Redant S, Empain A, Mugisha A, Kamgang P, Attou R, Honore PM, et al. Management of late onset urea cycle disorders-a remaining challenge for the intensivist? Ann Intensive Care 2021;11:2. https://doi.org/10.1186/s13613-020-00797-y
  2. Maestri NE, Brusilow SW, Clissold DB, Bassett SS. Long-term treatment of girls with ornithine transcarbamylase deficiency. N Engl J Med 1996;335:855-9. https://doi.org/10.1056/NEJM199609193351204
  3. Batshaw ML, Tuchman M, Summar M, Seminara J, Members of the Urea Cycle Disorders C. A longitudinal study of urea cycle disorders. Mol Genet Metab 2014;113:127-30. https://doi.org/10.1016/j.ymgme.2014.08.001
  4. Waisbren SE, Gropman AL, Members of the Urea Cycle Disorders C, Batshaw ML. Improving long term outcomes in urea cycle disorders-report from the Urea Cycle Disorders Consortium. J Inherit Metab Dis 2016;39:573-84. https://doi.org/10.1007/s10545-016-9942-0
  5. Nicolaides P, Liebsch D, Dale N, Leonard J, Surtees R. Neurological outcome of patients with ornithine carbamoyltransferase deficiency. Arch Dis Child 2002;86:54-6. https://doi.org/10.1136/adc.86.1.54
  6. Maestri NE, Clissold D, Brusilow SW. Neonatal onset ornithine transcarbamylase deficiency: A retrospective analysis. J Pediatr 1999;134:268-72. https://doi.org/10.1016/S0022-3476(99)70448-8
  7. Walker V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes Metab 2009;11:823-35. https://doi.org/10.1111/j.1463-1326.2009.01054.x
  8. Haberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019;42:1192-230. https://doi.org/10.1002/jimd.12100
  9. Hidaka M, Higashi E, Uwatoko T, Uwatoko K, Urashima M, Takashima H, et al. Late-onset ornithine transcarbamylase deficiency: a rare cause of recurrent abnormal behavior in adults. Acute Med Surg. 2020;7:e565.
  10. Nassogne MC, Heron B, Touati G, Rabier D, Saudubray JM. Urea cycle defects: management and outcome. J Inherit Metab Dis 2005;28:407-14. https://doi.org/10.1007/s10545-005-0303-7
  11. Pizzi MA, Alejos D, Hasan TF, Atwal PS, Krishnaiengar SR, Freeman WD. Adult Presentation of Ornithine Transcarbamylase Deficiency: 2 Illustrative Cases of Phenotypic Variability and Literature Review. Neurohospitalist 2019;9:30-6. https://doi.org/10.1177/1941874418764817
  12. Wijdicks EF. Hepatic Encephalopathy. N Engl J Med 2016;375:1660-70. https://doi.org/10.1056/NEJMra1600561
  13. Arranz JA, Riudor E, Marco-Marin C, Rubio V. Esti- mation of the total number of disease-causing mutations in ornithine transcarbamylase (OTC) deficiency. Value of the OTC structure in predicting a mutation pathogenic potential. J Inherit Metab Dis 2007;30:217-26. https://doi.org/10.1007/s10545-007-0429-x
  14. Krivitzky L, Babikian T, Lee HS, Thomas NH, Burk-Paull KL, Batshaw ML. Intellectual, adaptive, and behavioral functioning in children with urea cycle disorders. Pediatr Res 2009;66:96-101. https://doi.org/10.1203/PDR.0b013e3181a27a16
  15. Waisbren SE, He J, McCarter R. Assessing Psychological Functioning in Metabolic Disorders: Validation of the Adaptive Behavior Assessment System, Second Edition (ABAS-II), and the Behavior Rating Inventory of Executive Function (BRIEF) for Identification of Individuals at Risk. JIMD Rep 2015;21:35-43. https://doi.org/10.1007/8904_2014_373
  16. Buerger C, Garbade SF, Dietrich Alber F, Waisbren SE, McCarter R, Kolker S, et al. Impairment of cognitive function in ornithine transcarbamylase deficiency is global rather than domain-specific and is associated with disease onset, sex, maximum ammonium, and number of hyperammonemic events. J Inherit Metab Dis 2019;42:243-53. https://doi.org/10.1002/jimd.12013
  17. Posset R, Gropman AL, Nagamani SCS, Burrage LC, Bedoyan JK, Wong D, et al. Impact of Diagnosis and Therapy on Cognitive Function in Urea Cycle Disorders. Ann Neurol 2019;86:116-28.
  18. Batshaw ML. Hyperammonemia. Curr Probl Pediatr 1984;14:1-69.
  19. Dolman CL, Clasen RA, Dorovini-Zis K. Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol 1988;7:10-5.
  20. Sprouse C, King J, Helman G, Pacheco-Colon I, Shattuck K, Breeden A, et al. Investigating neurological deficits in carriers and affected patients with ornithine transcarbamylase deficiency. Mol Genet Metab 2014;113:136-41. https://doi.org/10.1016/j.ymgme.2014.05.007
  21. Anderson A, Gropman A, Le Mons C, Stratakis C, Gandjbakhche A. Evaluation of neurocognitive function of prefrontal cortex in ornithine transcarbamylase deficiency. Mol Genet Metab 2020;129:207-12. https://doi.org/10.1016/j.ymgme.2019.12.014
  22. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med 1984;310:1500-5. https://doi.org/10.1056/NEJM198406073102304
  23. Kawata A, Suda M, Tanabe H. Adult-onset type II citrullinemia: clinical pictures before and after liver transplantation. Intern Med 1997;36:408-12. https://doi.org/10.2169/internalmedicine.36.408
  24. Baganz MD, Dross PE. Valproic acid-induced hyperammonemic encephalopathy: MR appearance. AJNR Am J Neuroradiol 1994;15:1779-81.
  25. Chen YF, Huang YC, Liu HM, Hwu WL. MRI in a case of adult-onset citrullinemia. Neuroradiology 2001;43:845-7. https://doi.org/10.1007/s002340100608
  26. Janzer RC, Friede RL. Perisulcal infarcts: lesions caused by hypotension during increased intracranial pressure. Ann Neurol 1979;6:399-404. https://doi.org/10.1002/ana.410060504
  27. Martin JJ, Farriaux JP, De Jonghe P. Neuropathology of citrullinaemia. Acta Neuropathol 1982;56:303-6. https://doi.org/10.1007/BF00691263
  28. Filloux F, Townsend JJ, Leonard C. Ornithine transcarbamylase deficiency: neuropathologic changes acquired in utero. J Pediatr 1986;108:942-5. https://doi.org/10.1016/S0022-3476(86)80935-0
  29. Connelly A, Cross JH, Gadian DG, Hunter JV, Kirkham FJ, Leonard JV. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 1993;33:77-81. https://doi.org/10.1203/00006450-199301000-00016
  30. Bajaj SK, Kurlemann G, Schuierer G, Peters PE. CT and MRI in a girl with late-onset ornithine transcarbamylase deficiency: case report. Neuroradiology 1996; 38:796-9. https://doi.org/10.1007/s002340050351
  31. de Grauw TJ, Smit LM, Brockstedt M, Meijer Y, vd Klei-von Moorsel J, Jakobs C. Acute hemiparesis as the presenting sign in a heterozygote for ornithine transcarbamylase deficiency. Neuropediatrics 1990;21:133-5. https://doi.org/10.1055/s-2008-1071479
  32. Mirowitz SA, Sartor K, Prensky AJ, Gado M, Hodges FJ, 3rd. Neurodegenerative diseases of childhood: MR and CT evaluation. J Comput Assist Tomogr 1991;15:210-22. https://doi.org/10.1097/00004728-199103000-00005
  33. Mamourian AC, du Plessis A. Urea cycle defect: a case with MR and CT findings resembling infarct. Pediatr Radiol 1991;21:594-5. https://doi.org/10.1007/BF02012608
  34. Kurihara A, Takanashi J, Tomita M, Kobayashi K, Ogawa A, Kanazawa M, et al. Magnetic resonance imaging in late-onset ornithine transcarbamylase deficiency. Brain Dev 2003;25:40-4. https://doi.org/10.1016/s0387-7604(02)00153-5
  35. Amodio P, Marchetti P, Del Piccolo F, de Tourtchaninoff M, Varghese P, Zuliani C, et al. Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clin Neurophysiol 1999;110:1334-44. https://doi.org/10.1016/S1388-2457(99)00076-0
  36. Brunquell P, Tezcan K, DiMario FJ, Jr. Electroencephalographic findings in ornithine transcarbamylase deficiency. J Child Neurol 1999;14:533-6. https://doi.org/10.1177/088307389901400810
  37. Lichter-Konecki U, Caldovic L, Morizono H, Simpson K, Ah Mew N, MacLeod E. Ornithine Transcarba- mylase Deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, et al., editors. GeneReviews((R)). Seattle (WA) 1993.
  38. Brassier A, Gobin S, Arnoux JB, Valayannopoulos V, Habarou F, Kossorotoff M, et al. Long-term outcomes in Ornithine Transcarbamylase deficiency: a series of 90 patients. Orphanet J Rare Dis 2015;10:58. https://doi.org/10.1186/s13023-015-0266-1