• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.05 seconds

Characterization of BLT/insulator/Si structure using $ZrO_2$ and $CeO_2$ insulator ($ZrO_2$$CeO_2$ 절연체를 이용한 BLT/절연체/Si 구조의 특성)

  • Lee, Jung-Mi;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.186-189
    • /
    • 2003
  • The MFIS capacitors were fabricated using a metalorganic decomposition method. Thin layers of $ZrO_2$ and $CeO_2$ were deposited as a buffer layer on Si substrate and BLT thin films were used as a ferroelectric layer. The electrical and structural properties of the MFIS structure were investigated. X -ray diffraction was used to determine the phase of the BLT thin films and the quality of the $ZrO_2$ and $CeO_2$ layer. AES show no interdiffusion and the formation of amorphous $SiO_2$ layer is suppressed by using the $ZrO_2$ and $CeO_2$ film as buffer layer between the BLT film and Si substrate. The width of the memory window in the C-V curves for the $BLT/ZrO_2/Si$ and $BLT/CeO_2/Si$ structure is 2.94 V and 1.3V, respectively. The experimental results show that the BLT-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF

The Quantification of TiO2 Thickness Using Color Values by Spectrophotometer and Chromameter (분광측색계, 색차계의 색 수치 값을 이용한 타이타늄 산화막의 두께 정량화)

  • Lee, Dayoung;Han, Ayoung;Ha, Dongheun;Yoo, Hyeonseok;Kim, Hunsik;Jung, Nagyeom;Jang, Kwanseop;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • The anodic $TiO_2$ layers which are prepared in various anodization conditions exhibit their specific color depending on the thickness of $TiO_2$. In this study, the relationship between the color of $TiO_2$ layer, which is grown by PEO (Plasma electrolytic oxidation), and the thickness of the $TiO_2$ layer is investigated. To evaluate the color change of the $TiO_2$ layer, the value of color ($dE^*ab$) is measured and calculated by spectrophotometer and chromameter. As a result, it is found that $dE^*ab$ values and thickness of $TiO_2$ layers form a linear relationship with meaningful formular. This formula can be helpful to quantify the thickness of the $TiO_2$ layer by the numerical $dE^*ab$ values. In this process, the spectrophotometer shows more precise results than the chromameter dose. If fluoride ions ($F^-$) are included in the electrolyte, it will affect the $dE^*ab$ values of the $TiO_2$. layer. This is against the propensity, which is analyzed by XRD (X-ray diffraction) and XPS (X-ray photoelectron spectroscopy). It is important that the formular suggested in this study provides other metals which can be also anodized with the possibility of quantifying the thickness of the $TiO_2$ layer by the $dE^*ab$ values.

A Study on Thermal Stability of Ga-doped ZnO Thin Films with a $TiO_2$ Barrier Layer

  • Park, On-Jeon;Song, Sang-Woo;Lee, Kyung-Ju;Roh, Ji-Hyung;Kim, Hwan-Sun;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.434-436
    • /
    • 2013
  • Ga-doped ZnO (GZO) was substitutes of the SnO2:F films on soda lime glass substrate in the photovoltaic devices such as CIGS, CdTe and DSSC due to good properties and low cost. However, it was reported that the electrical resistivity of GZO is unstable above $300^{\circ}C$ in air atmosphere. To improve thermal stability of GZO thin films at high temperature above $300^{\circ}C$ an $TiO_2$ thin film was deposited on the top of GZO thin films as a barrier layer by Pulsed Laser Deposition (PLD) method. $TiO_2$ thin films were deposited at various thicknesses from 25 nm to 100 nm. Subsequently, these films were annealed at temperature of $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$ in air atmosphere for 20 min. The XRD measurement results showed all the films had a preferentially oriented ( 0 0 2 ) peak, and the intensity of ( 0 0 2 ) peak nearly did not change both GZO (300 nm) single layer and $TiO_2$ (50 nm)/GZO (300 nm) double layer. The resistivity of GZO (300 nm) single layer increased from $7.6{\times}10^{-4}{\Omega}m$ (RT) to $7.7{\times}10^{-2}{\Omega}m$ ($500^{\circ}C$). However, in the case of the $TiO_2$ (50 nm)/GZO (300 nm) double layer, resistivity showed small change from $7.9{\times}10^{-4}{\Omega}m$ (RT) to $5.2{\times}10^{-3}{\Omega}m$ ($500^{\circ}C$). Meanwhile, the average transmittance of all the films exceeded 80% in the visible spectrum, which suggests that these films will be suitable for photovoltaic devices.

  • PDF

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition (전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성)

  • Kim, Dong Ha;Riu, Doh-Hyung;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

Improvement of Charge Transfer Efficiency of Dye-sensitized Solar Cells by Blocking Layer Coatings (차단막 코팅에 의한 염료 태양전지의 전하전송효율 개선에 관한 연구)

  • Choi, Woo-Jin;Kim, Kwang-Tae;Kwak, Dong-Joo;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.344-348
    • /
    • 2011
  • A layer of $TiO_2$ thin film less than ~200nm in thickness, as a blocking layer, was deposited by 13.56 MHz radio frequency magnetron sputtering method directly onto the anode electrode to be isolated from the electrolyte in dye-sensitized solar cells (DSCs). This is to prevent the electrons from back-transferring from the electrode to the electrolyte ($I^-/{I_3}^-$). The presented DSCs were fabricated with working electrode of F:$SnO_2$(FTO) glass coated with blocking $TiO_2$ layer, dye-attached nanoporous $TiO_2$ layer, gel electrolyte and counter electrode of Pt-deposited FTO glass. The effects of blocking layer were studied with respect to impedance and conversion efficiency of the cells. The, electrochemical impedances of DSCs using this electrode were $R_1$: 13.9, $R_2$: 15.0, $R_3$: 10.9 and $R_h$: $82{\Omega}$. The $R_2$ impedance related by electron movement from nanoporous $TiO_2$ to TCO showed lower than that of normal DSCs. The photo-conversion efficiency of prepared DSCs was 5.97% ($V_{oc}$: 0.75V, $J_{sc}$: 10.5 mA/$cm^2$, ff: 0.75) and approximately 1% higher than general DSCs sample.

The Analysis of Wear Phenomena on Added Carbon Content Gas Atmosphere in Ion-Nitriding (이온질화에 있어서 가스중 첨가탄소량에 대한 마모현상 분석)

  • 조규식
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.96-104
    • /
    • 1997
  • This paper was focused on the wear characteristics of ion-nitrided metal and with ion-nitride processing, which is basically concerned with the effects of carbon content in workpiece and added carbon content gas atmosphere on the best wear performance. Increased carbon content in workpiece increases compound layer thickness, but decreases diffusion layer thickness. On the other hand, a small optimal amount of carbon content in gas atmosphere increase compound layer thickness as well as diffusion layer thickness and hardness. Wear tests show that the compound layer of ion-nitrided metal reduces wear rate when the applied wear load is small. However, as the load becomes large, the existence of compound layer tends to increase wear rate. Compressive residual stress at the compound layer is the largest at the compound layer, and decreases as the depth from the surface increases. It is found in the analysis that under small applied load, the critical depth where voids and cracks may be created and propagated is located at the compound layer, so that the adhesive wear is created and the existence of compound layer reduces the amount of wear. When the load becomes large, the critical depth is located below the compound layer and delamination, which may explained by surface deformation, crack nucleation and propagation, is created and the existence of compound layer increases wear rate. For the compound layer, at added carbon contents of 0 percent and 0.5 at. percent, the $\varepsilon$ monophase is predominant. But at 0.7 at. percent added carbon, the $\varepsilon$ monophase formation tends to be severely inhibited and r' and $Fe_3C$ polyphase formation becomes dominant. This increased hard $\varepsilon$ phase layer was observed to be more beneficial in reducing friction and wear.

Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

  • Da-Bin SONG;Keon-Ho KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.239-252
    • /
    • 2023
  • In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer's layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.

Electrical Characteristics of Engineered Tunnel Barrier using $SiO_2/HfO_2$ and $Al_2O_3/HfO_2$ stacks ($SiO_2/HfO_2$$Al_2O_3/HfO_2$를 이용한 Engineered Tunnel Barrier의 전기적 특성)

  • Kim, Kwan-Su;Park, Goon-Ho;Yoon, Jong-Won;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.127-128
    • /
    • 2008
  • The electrical characteristics of VARIOT (variable oxide thickness) with various $HfO_2$ thicknesses on thin $SiO_2$ or $Al_2O_3$ layer were investigated. Especially, the charge trapping characteristics of $HfO_2$ layer were intensively studied. The thin $HfO_2$ layer has small charge trapping characteristics while the thick $HfO_2$ layer has large memory window. Therefore, the $HfO_2$ layer is superior material and can be applied to charge storage as well as tunneling barrier of the non-volatile memory applications.

  • PDF

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

A Study on the Characteristics of Green Design and Construction of Golf Courses in Korea (한국의 골프 코스 그린의 설계 및 시공 특성에 관한 연구)

  • 이상재;허근영
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.4
    • /
    • pp.181-190
    • /
    • 1999
  • This study was carried out to survey green system, area, green slope, green turfgrass variety, green section, and particle size of green construction materials, and to investigate and evaluate the characteristics of Design and Construction in Korean golf course green for improving the quality of Korean golf course into that of the international golf course held international tournament. The results were as follows. 1. The greens of 129 Korean golf courses consisted of 2(two) green system and 1(one) green system. 2(two) green system was 50.8%, 1(one) green system was 40.7%, and 1+2 green system was 8.5% of them. 2. In 48 Korean golf courses, the green area of 2(two) green system was mostly 400~$600\m^2$(56.5%) and the green area of 1(one) green system was mostly 600~$800\m^2$(47.8%). In 48 Korean golf courses, 1.5~3% green slope appeared the highest frequency(50.0%) and the next was 3~5%(29.4%). 3. Penncross variety was the highest frequency(71.2%). The next was mixed variety (Penncross+Crenshaw, Penn A-1, Pennlinks, or Penneagle/SR 1020+SR 1019) and the frequency of mixed variety was 7.6%. 4. In 48 Korean golf courses, 70~80cm total thickness of green appeared the highest frequency(36.1%), 10~20cm thickness of green mixed sandy layer appeared the highest frequency(43.6%), and 10~20cm thickness of green coarse sandy layer appeared the highest frequency(55.6%). 0~10cm thickness of green gravel layer appeared the highest frequency(67.6%), 20~30cm thickness of green drain layer appeared the highest frequency(52.8%), and 20~30cm width of green drain layer appeared the highest frequency(44.4%). Below 1mm sand diameter used in green mixed sandy layer appeared the highest frequency(46.2%), below 2mm or over 2mm sand diameter used in green coarse sandy layer appeared the highest frequency(31.4%). 20~40mm coarse gravel diameter used in green gravel layer appeared the highest frequency(43.2%) and 0~20mm fine gravel diameter used in green gravel layer appeared the highest frequency(65.8%). 20~40mm gravel diameter used in green drain layer appeared the highest frequency(64.1%).

  • PDF