DOI QR코드

DOI QR Code

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition

전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성

  • Kim, Dong Ha (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김동하 (서울과학기술대학교 신소재공학과) ;
  • 류도형 (서울과학기술대학교 신소재공학과) ;
  • 최병준 (서울과학기술대학교 신소재공학과)
  • Received : 2018.01.31
  • Accepted : 2018.02.11
  • Published : 2018.02.28

Abstract

Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

Keywords

References

  1. D. H. Kim and B. J. Choi: J. Korean Powder Metall. Inst., 23 (2016) 170. https://doi.org/10.4150/KPMI.2016.23.2.170
  2. S. Boukhalfa, K. Evanoff and G. Yushin: Energy Environ. Sci., 5 (2012) 6872. https://doi.org/10.1039/c2ee21110f
  3. Y. S. Jung, A. S. Cavanagh, L. A. Riley, S. H. Kang, A. C. Dillon, M. D. Groner, S. M. George and S. H. Lee: Adv. Mater., 22 (2010) 2172. https://doi.org/10.1002/adma.200903951
  4. L. A. Riley, A. S. Cavanagh, S. M. George, Y. S. Jung, Y. Yan, S. H. Lee and A. C. Dillon: Chem. Phys. Chem., 11 (2010) 2124. https://doi.org/10.1002/cphc.201000158
  5. S. W. Kim, T. H. Han, J. S. Kim, H. J. Gwon, H. S. Moon, S. W. Kang, S. O. Kim and K. S. Kang: ACS Nano, 3 (2009) 1085.
  6. G. H. An and H. J. Ahn: Carbon, 65 (2013) 87. https://doi.org/10.1016/j.carbon.2013.08.002
  7. C. M. Lin, Y. T. Chen, C. H. Lee, H. C. Chang, W. C. Chang, H. L. Chang and C. W. Liu: J. Electrochem. Soc., 158 (2011) H128. https://doi.org/10.1149/1.3517173
  8. Y. Widjaja and C. B. Musgrave: Appl. Phys. Lett., 80 (2002) 3304. https://doi.org/10.1063/1.1473237
  9. J. T. Tanskanen and S. F. Bent: J. Phys. Chem. C, 117 (2013) 19056. https://doi.org/10.1021/jp4063324
  10. J. F. Moulder, J. Chastain and R. C. King: Handbook of x-ray photoelectron spectroscopy, Perkin-Elmer Corp., Eden Prairie, Minnesota (1995).