• Title/Summary/Keyword: lattice thermal conductivity

Search Result 59, Processing Time 0.027 seconds

Effects of Y2O3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering (Y2O3 첨가가 AlN 세라믹스의 방전 플라즈마 소결 거동 및 열전도도에 미치는 영향)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.827-831
    • /
    • 2008
  • Spark plasma sintering (SPS) of AlN ceramics were carried out with ${Y_2}{O_3}$ as sintering additive at a sintering temperature $1,550{\sim}1,700^{\circ}C$. The effect of ${Y_2}{O_3}$ addition on sintering behavior and thermal conductivity of AlN ceramics was studied. ${Y_2}{O_3}$ added AlN showed higher densification rate than pure AlN noticeably, but the formation of yttrium aluminates phases by the solid-state reaction of ${Y_2}{O_3}$ and ${Al_2}{O_3}$ existed on AlN surface could delay the densification during the sintering process. The thermal conductivity of AlN specimens was promoted by the addition of ${Y_2}{O_3}$ up to 3 wt% in spite of the formation of YAG secondary phase in AlN grain boundaries because ${Y_2}{O_3}$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. However, the thermal conductivity rather decreased over 3 wt% addition because an immoderate formation of YAG phases in grain boundary could decrease thermal conductivity by a phonon scattering surpassing the contribution of ${Y_2}{O_3}$ addition.

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-II: Applications by Coupling with COREDAX

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.660-672
    • /
    • 2016
  • In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare $k_{eff}$ eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences.

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong;Cha, Ye-Eun;Kim, Il-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.822-828
    • /
    • 2018
  • P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

Thermal Conductivity Measurement of Ge-SixGe1-x Core-Shell Nanowires Using Suspended Microdevices (뜬 마이크로 디바이스를 이용한 Ge-SixGe1-x Core-Shell Nanowires 의 열전도율 측정)

  • Park, Hyun Joon;Nah, Jung hyo;Tutuc, Emanuel;Seol, Jae Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.825-829
    • /
    • 2015
  • Theoretical calculations suggest that the thermoelectric figure of merit (ZT) can be improved by introducing a core-shell heterostructure to a semiconductor nanowire because of the reduced thermal conductivity of the nanowire. To experimentally verify the decrease in thermal conductivity in core-shell nanowires, the thermal conductivity of Ge-SixGe1-x core-shell nanowires grown by chemical vapor deposition (CVD) was measured using suspended microdevices. The silicon composition (Xsi) in the shells was measured to be about 0.65, and the remainder of the germanium in the shells was shown to play a role in decreasing defects originating from the lattice mismatch between the cores and shells. In addition to the standard four-point current- voltage (I-V) measurement, the measurement configuration based on the Wheatstone bridge was attempted to enhance the measurement sensitivity. The measured thermal conductivity values are in the range of 9-13 W/mK at room temperature and are lower by approximately 30 than that of a germanium nanowire with a comparable diameter.

Enhancement of Thermoelectric Performance in Spark Plasma Sintered p-Type Bi0.5Sb1.5Te3.0 Compound via Hot Isostatic Pressing (HIP) Induced Reduction of Lattice Thermal Conductivity (열간등방가압 공정을 통한 P형 Bi0.5Sb1.5Te3.0 소결체의 격자 열전도도 감소 및 열전 특성 향상)

  • Soo-Ho Jung;Ye Jin Woo;Kyung Tae Kim;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100℃. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.

Thermoelectric and Transport Properties of FeV1-xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.725-732
    • /
    • 2018
  • The thermoelectric and transport properties of Ti-doped FeVSb half-Heusler alloys were studied in this study. $FeV_{1-x}Ti_xSb$ (0.1 < x < 0.5) half-Heusler alloys were synthesized by mechanical alloying process and subsequent vacuum hot pressing. After vacuum hot pressing, a near singe phase with a small fraction of second phase was obtained in this experiment. Investigation of microstructure revealed that both grain and particle sizes were decreased on doping which would influence on thermal conductivity. No foreign elements pick up from the vial was seen during milling process. Thermoelectric properties were investigated as a function of temperature and doping level. The absolute value of Seebeck coefficient showed transition from negative to positive with increasing doping concentrations ($x{\geq}0.3$). Electrical conductivity, Seebeck coefficient and power factor increased with the increasing amount of Ti contents. The lattice thermal conductivity decreased considerably, possibly due to the mass disorder and grain boundary scattering. All of these turned out to increase in power factor significantly. As a result, the thermoelectric figure of merit increased comprehensively with Ti doping for this experiment, resulting in maximum thermoelectric figure of merit for $FeV_{0.7}Ti_{0.3}Sb$ at 658 K.

A discretization method of the three dimensional heat flow equation with excellent convergence characteristics (우수한 수렴특성을 갖는 3차원 열흐름 방정식의 이산화 방법)

  • Lee, Eun-Gu;Yun, Hyun-Min;Kim, Cheol-Seong
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.136-145
    • /
    • 2002
  • The simulator for the analysis of the lattice temperature under the steady-state condition is developed. The heat flow equation using the Slotboom variables is discretized and the integration method of the thermal conductivity without using the numerical analysis method is presented. The simulations are executed on the $N^+P$ junction diode and BJT to verify the proposed method. The average relative error of the lattice temperature of $N^+P$ diode compared with DAVINCI is 2% when 1.4[V] forward bias is applied and the average relative error of the lattice temperature of BJT compared with MEDICI is 3% when 5.0[V] is applied to the collector contact and 0.5[V] is applied to the base contact. BANDIS using the proposed method of integration of thermal conductivity needs 3.45 times of matrix solution to solve one bias step and DAVINCI needs 5.1 times of matrix solution MEDICI needs 4.3 times of matrix solution.

  • PDF

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.