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Abstract—The analyses on self-heating effect in 7 nm 
node non-rectangular Bulk FinFET device were 
performed using 3D device simulation with 
consideration to contact via and pad. From self-
heating effect simulation, the position where the 
maximum lattice temperature occurs in Bulk FinFET 
device was investigated. Through the comparison of 
thermal resistance at each node, main heat transfer 
path in Bulk FinFET device can be determined. Self-
heating effect with device parameter and operation 
temperature was also analyzed and compared. In 
addition, the impact of interconnects which are 
connected between the device on self-heating effect 
was investigated.    
 
Index Terms—Bulk FinFET, self-heating effect, 
thermal conductivity Rth, lattice temperature    

I. INTRODUCTION 

Self-heating effect (SHE) arises from the joule heating 
by carrier-to-lattice scattering [1, 2]. This effect can 
cause the performance degradation of operating devices. 
Especially, 3D devices such as FinFETs have lower 
thermal conductivity due to inefficient heat transfer 
caused by narrow conduction path compared to the 
planar MOSFET devices. This results in poor electro-

thermal characteristics although 3D devices have better 
electrostatic performance than conventional planar 
devices [3, 4] due to short channel effect (SCE) 
suppression. Thus far, the studies on SHE of silicon-on-
insulator (SOI) FinFETs due to their inferior heat transfer 
caused by low thermal conductivity of SiO2 have mainly 
been conducted by many groups [5, 6]. However, as 
device is extremely scaled under 10 nm node, SHE on 
bulk FinFET becomes important since the thermal 
conductivity in narrow structure becomes much smaller 
as device is continuously scaling [7-9]. 

In this paper, SHE in 7 nm node non-rectangular Bulk 
FinFET was analyzed using 3D device simulation with 
consideration to contact via and pad. SHE with device 
parameter variation and operation temperature was 
compared and analyzed. In addition, the impacts of 
interconnects connected between the devices were 
analyzed in order to confirm how they work as heat 
transfer path. 

II. DEVICE STRUCTURE AND SIMULATION  

SET-UP 

In this paper, Sentaurus device simulator was used for 
device simulation. Fig. 1(a) shows the Fin cross section 
view in 7 nm node non-rectangular Bulk FinFET device. 
Fig. 1(b) also shows the cross section view of non-
rectangular Bulk FinFET device along the channel 
direction. In addition, Fig. 1(c) shows the total structure 
for self-heating simulation including metal contact via 
and pad. The entire structure is surrounded by SiO2. The 
device parameters are based on ITRS 2013 roadmap for 
Low Power (LP) mode. Tungsten is assumed for the 
material of contact via, whereas copper is assumed for 
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contact pad. In this simulation, Hydrodynamics charge 
balance model was used in order to consider local lattice 
and carrier temperature. And, thermal boundary 
condition at each node (gate, source, drain, and substrate) 
was specified from surface resistance. Finally, thermal 
resistance at various interface was also considered in this 
simulation. Thermal conductivity values at narrow Fin, 
S/D region and Bulk Si are 0.25, 0.62, 1.5 W/K·cm, 
respectively [1]. Fig. 2 plots the transfer curves (ID-VGS) 
of 7 nm node Bulk FinFET device at two VDS values. 
From this figure, drain induced barrier lowering (DIBL) 
value is extracted to 37.0 mV/V. 

Fig. 3(a) shows the contour of lattice temperature (TL) 
in the cross section of 7 nm node Bulk FinFET device 
sliced at the middle of the Fin when the device is 

operated at 300 K. In this simulation, the TL of hot spot is 
337.1 K. Fig. 3(b) and (c) show the TL along the channel 
(AA’) and Fin height direction (BB’), respectively. It is 
shown that the hot spot which indicates the region where 
the TL is maximum exists in the drain & Fin bottom 
region [7]. This result can be explained as follows. The 
heat generated by joule heating is largest in lightly doped 
drain (LDD)/Drain boundary. And, the majority of heat 
generated at this region flows to the region having larger 
thermal conductivity (tungsten contact via and bulk Si). 
On the other hand, drain & Fin bottom region surrounded 
by lower thermal conductivity region (S/D Si, SiO2) has 
much lower heat flux. This means that the large portion 
of heat remains in this region, which results in higher TL. 

III. RESULTS AND DISCUSSION 

Fig. 4(a) shows the equivalent thermal circuit of Bulk 
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Fig. 1. (a) Fin Cross section view, (b) cross section view along 
the channel direction in 7 nm node Bulk FinFET device, (c) 
total structure for self-heating simulation including metal 
contact via and pad. 
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Fig. 2. Transfer curves (ID-VGS) of 7 nm node Bulk FinFET 
device at two VDS values. DIBL value is extracted to 37.0 
mV/V. 
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Fig. 3. (a) The contour of lattice temperature in the cross 
section of 7 nm node Bulk FinFET device, and lattice 
temperature along the (b) channel direction (AA’), (c) Fin 
height direction (BB’).  
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Fig. 4. (a) Equivalent thermal circuit of Bulk FinFET device,
(b) temperature increase of hot spot region versus dissipated 
power. 
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FinFET. In the equivalent thermal circuit, there are five 
nodes which are located at the gate, drain, source, 
substrate, and hot spot. Assuming that the heat source is 
located at the hot spot, all the heat flows are modeled by 
Rth’s between the hot spot and the other four nodes [8]. 
Fig. 4(b) shows the temperature increase of hot spot 
versus power dissipated in the Bulk FinFET device. Each 
thermal resistance (Rth) can be extracted from the linear 
slope of the increase of lattice temperature versus power 
assuming the limited heat path [8]. This figure indicates 
Rth of gate is the largest, whereas Rth of substrate is the 
smallest. This means that the largest portion of heat 
caused by joule heating flows through the substrate. Fig. 
5(a) shows the maximum lattice temperature increase 
(ΔTLMax) with Fin height at VGS=VDS=0.78 V. As shown in 
Fig. 5(a), ΔTLMax increases with Fin height since more 
joule heating is generated because of larger drain current 
by larger effective Fin width. Fig. 5(b) also shows the 
ΔTLMax versus dissipated power at various Fin height. 
Although ΔTLMax increases with Fin height, Rth decreases 
with Fin height due to decrease of thermal conductivity 
caused by the longer heat transfer path [9].  

Fig. 6(a) shows the ΔTLMax decreases with Fin width 
due to the less joule heating VGS=VDS=0.78 V. Fig. 6(b) 

also shows the ΔTLMax versus dissipated power at various 
Fin width. From this figure, Rth decreases with Fin width 
due to decrease of thermal conductivity caused by the 
broader heat transfer area. 

Fig. 7(a) shows the maximum lattive temperature 
increase (ΔTLMax) versus operation temperature VGS=VDS= 
0.78 V. As expected, ΔTLmax increases with increasing TL. 
Fig. 7(b) also shows the increase in ΔTLmax versus 
dissipated power at various operation temperature (300, 
325, 350, and 375 K). The extracted Rth value at various 
temperatures is indicated in the inset of Fig. 7(b). The Rth 
value increases with increasing TL (8% increase from 300 
K to 375 K). This result comes from the decrease on 
thermal conductivity of silicon with temperature. 

The impact of interconnection as well as single Bulk 
FinFET device on SHE is simulated and analyzed. Fig. 8 
shows the contour of TL when one transistor is turned on 
and another transistor is turned off. The temperature of 
hot spot is 329.3 K which is smaller than that of hot spot 
in single Bulk FinFET device (337.1 K). This result is 
due to the flow of heat generated by joule heating 
through interconnection between two devices as shown 
in Fig. 8(b) and (c) [8]. 

Fig. 9 shows the contour of TL when two transistors 
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Fig. 5. (a) The maximum lattice temperature increase (ΔTLMax) 
with Fin height, (b) ΔTLMax versus dissipated power at various 
Fin height. 
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Fig. 6. (a) The maximum lattice temperature increase (ΔTLMax) 
with Fin width, (b) ΔTLMax versus dissipated power at various 
Fin width. 
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are connected in series. The temperature of hot spot is 
320.4 K which is much smaller than that of hot spot in 
single Bulk FinFET device (337.1 K). The result comes 
from the fact that voltage applied on transistor 1 is 
approximately 0.59 V which is smaller than supply 
voltage (0.78 V) since the transistor 2 acts as resistor 
which results in voltage drop across the transistor 2.  

IV. CONCLUSION 

Self-heating effect in 7 nm node non-rectangular Bulk 
FinFET was analyzed using 3D device simulation with 
consideration to contact via and pad. The hot spot exists 
in the drain & Fin bottom region. Substrate is determined 
to be the main heat transfer path through the comparison 
of extracted Rth value at each node. Self-heating effect 
with device parameter and operation temperature was 
analyzed. In addition, it was confirmed that the impact of 
interconnects connected between the device is to reduce 
hot spot temperature by providing the heat transfer path. 
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