• Title/Summary/Keyword: lateral stress

Search Result 806, Processing Time 0.029 seconds

Structural Reliability of Thick FRP Plates subjected to Lateral Pressure Loads

  • Hankoo Jeong;R. Ajit Shenoi;Kim, Kisung
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.38-57
    • /
    • 2000
  • This paper deals with reliability analysis of specially orthotropic plates subjected to transverse lateral pressure loads by using Monte Carlo simulation method. The plates are simply supported around their all edges and have a low short span to plate depth ratio with rectangular plate shapes. Various levels of reliability analyses of the plates are performed within the context of First-Ply-Failure(FPF) analysis such as ply-/laminate-level reliability analyse, failure tree analysis and sensitivity analysis of basic design variables to estimated plate reliabilities. In performing all these levels of reliability analyses, the followings are considered within the Monte Carlo simulation method: (1) input parameters to the strengths of the plates such as applied transverse lateral pressure loads, elastic moduli, geometric including plate thickness and ultimate strength values of the plates are treated as basic design variables following a normal probability distribution; (2) the mechanical responses of the plates are calculated by using simplified higher-order shear deformation theory which can predict the mechanical responses of thick laminated plates accurately; and (3) the limit state equations are derived from polynomial failure criteria for composite materials such as maximum stress, maximum strain, Tsai-Hill, Tsai-Wu and Hoffman.

  • PDF

A Study on the Bearing Capacity of Rammed Aggregate Pier as the Intermediate Foundations (중간기초개념으로서 짧은 쇄석다짐말뚝의 지지력 특성에 관한 연구)

  • CHUN BYUNG-SIK;KIM KYUNG-MIN;KIM JUN-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.247-252
    • /
    • 2004
  • To secure stability and availability of Rammed Aggregate Pier method as the foundation of a structure, the bearing capacity and failure behavior characteristics was studied through soil laboratory tests in a model ground. In this study, soil laboratory tests use carried out to find the applicability of RAP method as the foundation of a structure. And bearing capacity and the failure mechanism of RAP method was studied according to relative density($60\%,\;70\%,\;90\%$), diameter(45mm, 60mm, 70mm) of each pier ana depth(5cm, l0cm, 15cm, 20cm, 25cm, 30cm). Earth pressure cell is set up approach RAP and 1.0D space at RAP center. Bearing acpacity and the failure mechanism of RAP is investigated by load test As a result, bulging failure was happened in $5\~10cm\;(1.0D\~2.00)$ depth which the maximum lateral earth pressure is acting. Especially, diameter changing of RAP are in inverse proportion to the relative density and the lateral stress is very much influenced by the lateral earth pressure in every layer and tends to decrease according to depth.

  • PDF

Numerical Determination of Lateral Loss Coefficients for Subchannel Analysis in Nuclear Fuel Bundles (핵 연료집합체 부수로 해석을 위한 횡 방향 압력손실계수의 수치적 결정)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.491-502
    • /
    • 1995
  • In accurate prediction of cross-flow based on detailed knowledge of the velocity field in subchannels of a nuclear fuel assembly is of importance in nuclear fuel performance analysis. In this study, the low-Reynolds number k-$\varepsilon$ turbulence model has been adopted in too adjacent subchannels with cross-flow. The secondary flow is accurately estimated by the anisotropic algebraic Reynolds stress model. This model was numerically calculated by the finite element method and has been verified successfully through comparison with existing experimental data. Finally, with the numerical analysis of the velocity Held in such subchannel domain, an analytical correlation of the lateral loss coefficient is obtained to predict the cross-flow rate in subchannel analysis codes. The correlation is expressed as a function of the ratio of the lateral How velocity to the donor subchannel axial velocity, recipient channel Reynolds number and pitch-to-diameter.

  • PDF

Lateral load effects on tall shear wall structures of different height

  • Carpinteri, Alberto;Corrado, Mauro;Lacidogna, Giuseppe;Cammarano, Sandro
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.313-337
    • /
    • 2012
  • A three-dimensional formulation is proposed to analyze the lateral loading distribution of external actions in high-rise buildings. The method is extended to encompass any combination of bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of Timoshenko-Vlasov's theory of sectorial areas. More in detail, the proposed unified approach is a tool for the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and allows to better understand stress and strain distributions in the different bearing elements if compared to a finite element analysis. Numerical examples, describing the structural response of tall buildings characterized by bracings with different cross-section and height, show the effectiveness and flexibility of the proposed method. The accuracy of the results is investigated by a comparison with finite element solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements.

Flexural Capacity and Non-Linear Characteristic Evaluation of Circular Column Confined by Carbon Sheet Tube (카본시트튜브로 구속된 원형기둥의 휨내력 및 비선형 특성에 대한 연구)

  • Lee, Kyoung Hun;Yoo, Youn Jong;Kim, Hee Cheul;Hong, Won Kee;Lee, Young Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2007
  • Six full scale column specimens have been tested under the constant axial and cyclic lateral load. An equivalent stress block parameter was used to estimate flexural capacity of columns confined by carbon sheet tube. Through the non-linear regression analysis, behaviors of CFCST(Concrete Filled Carbon Sheet Tube) columns under the cyclic lateral load were estimated and compared with test results.

STRESS ANALYSIS ON THE ALVEOLAR BONE OF CANTILEVER BRIDGES REPLACING MAXILLARY LATERAL INCISOR (상악측절치 수복을 위한 Cantilever bridge)

  • Kim Hyoung-Soo;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.303-316
    • /
    • 1993
  • The purpose of this study was to analysis the stress distribution induced by three unit PFM bridges and various cantilever bridges replacing maxillary latersal incisor. The simplified two-dimensional photoelastic models used for this study was contructed in the folio- wing way. CR/R ratio was designed to be 1 : 1, 1 : 1.25 and 1 : 1.5. The pontics of cantilever bridge supported by maxillary canines consisted of wrap-around type, rest-extension type, and simple type. 3-unit PFM bridge was constructed with traditional method. 1kg vertical static load was applied on the center of the incisal edge of the pontic. The stress pattern was examined and recorded by photography. The results obtained were as follows ; 1. The magnitude of stress on the abutment root apex area of a traditional 3-unit bridge was the lowest. 2. The model of cantilevered pontic with a rest showed the relatively well distributed stress around the abutment tooth. The model with simple pontic generated the greatest stress concentration in the supporting structure of the abutment tooth. 3. As the height of bone level reduced, the rotational and vertical force increased around the abutment tooth. 4. The stress concentration of the 3-unit bridges occured on the root apex and stress concentration of the cantilever briage occured on the root apex and cervix area, 5. In the case of the cantilever bridge, stress concentrated distally on the root apex area of the abutment tooth and additional stress was observed mesially on the upper part of the root. Especially in the case of the simple pontic, was phenomenon was more apparent than the others. 6. Force applied to cantilevered pontic was transmitted to the adjacent central incisor through the contact surface. Stress was markedly observed on the mesial cervix area in the case of simple pontic and on the root apex area in the case of wrap-around type and rest-extension type.

  • PDF

Finite Element Analysis of Reinforced Earth Wall Behavior (보강토 옹벽의 거동에 관한 유한요소 해석)

  • 최인석;장연수;조광철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.805-812
    • /
    • 2003
  • The purpose of this study is to evaluate the behavior of a reinforced earth wall by modeling the properties of the interface between soil and reinforced elements as well as the non-linear stress-strain characteristics of soil. The effect of lateral earth pressures induced during construction is also included in the analyses. The interface element used to evaluate the relative movement of the interface between soil/reinforcement and soil/wall- facing has a zero thickness and essentially consists of normal and shear springs. The behavior of soil element is calculated based on the hyperbolic model. The computer program SSCOMPPC which includes the interface element, hyperbolic model and bi-linear model is applied in this study. From the analyses, it is showed that the locus of maximum tension were closed to the hi-linear failure line of theoretical analyses. The lateral displacement of SSCOMPPC is larger than that of the FLAC which adopts the elastic model. This means the analysis which is adopted the hyperbolic model and interface element induced more larger displacement.

  • PDF

Buckling Sensitivity of CWR Tracks according to the Characteristics of the Probability Distribution of the Lateral Ballast Resistance (도상횡저항력의 확률분포 특성에 따른 CWR 궤도의 좌굴 민감도)

  • Yun, Kyung-Min;Bae, Hyun-Ung;Kang, Tae-Ku;Kim, Myoung-Su;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.423-426
    • /
    • 2011
  • The excessive axial load occurred in an immovable zone of continuous welded rail(CWR) tracks threatens the security of running trains due to the track buckling in extreme hot summer. The influence factors, such as rail temperature for compressive stress, ballast resistance for track stiffness and initial imperfection of track for tracks irregularity are uncertain track parameters that are randomly varied by climate conditions, operating conditions and maintenance of track etc. So, buckling of CWR tracks has very high uncertainties. Therefore, applying the probabilistic approach method is essential in order to rationally consider the uncertainty and randomness of the various parameters. In this study, buckling sensitivity analysis was carried out with respect to the characteristics of probability distribution of lateral ballast resistance using the buckling probability evaluation system of CWR tracks developed by our research team.

  • PDF

Experimental Study on the Bogie Frame of Tilting Railway Vehicle for Assessment of Structural Safety (한국형 틸팅열차용 주행장치 프레임의 구조적 안전성 평가에 관한 시험적 연구)

  • Kim, Jung-Seok;Kim, Nam-Po;Seo, Sung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.166-173
    • /
    • 2006
  • This paper investigated strength of a bogie frame for Korean tilting train that is being developed in KRRI. In this study, static load tests based on Japanese Industrial Standard (JIS) were performed. In order to simulate vertical and lateral components generated by tilting link mechanism, four hydraulic actuators were used. The eight load cases such as vertical, lateral, traction, braking and driving gear loads were applied for evaluation of the strength of bogie frame. The stresses measured at the stress concentration points were assessed using Goodman diagram. From the experimental results, structural safety of the bogie frame could be ensured.

An Experimental Study on the Mechanical Properties of High Performance Concrete with Material for Lateral Confinement (횡구속 재료변화에 따른 고성능 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 김은호;정덕우;홍상희;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.563-568
    • /
    • 2002
  • This paper is a fundamental study on the mechanical properties of the high performance concrete confined with metal lath, glass and carbon fiber laterally. According to the results, it shows that the compressive strength increases by 9%, 8% and 6% in metal lath carbon fiber and glass fiber in case of W/B 30% respectively. In case of W/B 30% and 40%, flecxural strength shows largely in order of carbon fiber, metal lath, glass fiber. In strain-stress curve with the kinds of material for lateral confinement, while brittleness failure occurs in plain concrete just after maximum load, it is improved in some degree in confined concrete due to increase of the strain by increase of toughness. But, elastic modulus shows the similar tendency between confined concrete and plain concrete. Length change ratio by drying shrinkage shows little a bit in order of carbon fiber, glass fiber and metal lath due to confinement.

  • PDF