References
- Beck, H., Konig, G. and Reeh, H. (1968), "Kenngrossen zur Beurteilung der Torsionssteifigkeit von Hochhausern", Beton und Stahlbetonbau, 63, 268-277. (in German)
- Beck, H. and Schafer, H.G. (1969), "Die Berechnung von Hochhausern durch Zusammenfassung aller aussteifenden Bauteile zu einen Balken", Der Bauingenieur, 44, 80-87.(in German)
- Capurso, M. (1981), "Sul calcolo dei sistemi spaziali di controventamento, parte 1", Giornale del Genio Civile, 1-2-3, 27-42. (in Italian)
- Carpinteri, A. and Carpinteri, An. (1985), "Lateral loading distribution between the elements of a threedimensional civil structure", Comput. Struct., 21, 563-580. https://doi.org/10.1016/0045-7949(85)90134-8
- Carpinteri, A., Lacidogna, G. and Puzzi, S. (2010), "A global approach for three-dimensional analysis of tall buildings", Struct. Design Tall Spec. Build., 19, 518-536.
- Coull, A. and Irwin, A.W. (1972), "Model investigation of shear wall structures", J. Struct. Div. ASCE, 98, 233-1237.
- Coull, A. and Bose, B. (1977), "Simplified analysis of framed-tube structures", J. Struct. Div. ASCE, 101, 2223-2240.
- European Committee for Standardization (2002), Eurocode 1: Actions on structures. General actions. Densities, self-weight, imposed loads for buildings, BS EN 1991-1-1:2002, British Standard Institution.
- Fischer, C. and Kasal, B. (2009), "Analysis of light-frame, low-rise buildings under simulated lateral wind loads", Wind Struct., 12(2), 22-33.
- Gluck, J. and Krauss, M. (1973), "Stress analysis of group of interconnected thin-walled cantilevers", J. Struct. Div. ASCE, 99, 2143-2165.
- Heidebrecht, A.C. and Stafford Smith, B. (1973), "Approximate analysis of tall wall-frame structures", J. Struct. Div. ASCE, 99, 199-221.
- Hoenderkamp, J.C.D. and Snijder, H. (2000), "Approximate analysis of high-rise frames with flexible connections", Struct. Design Tall Build., 9, 233-248. https://doi.org/10.1002/1099-1794(200006)9:3<233::AID-TAL156>3.0.CO;2-O
- Howson, W.P. (2006), "Global Analysis: Back to the Future", Struct. Eng., 84, 18-21.
- Humar, J.L. and Khandoker, J.U. (1980), "A computer program for three-dimensional analysis of buildings", Comput. Struct., 1, 369-387.
- Khan, F.R. (1974), "Tubular structures for tall buildings", Handbook of Concrete Engineering, Van Nostrand Reinhold Co., 345-355.
- Khan, F.R. and Sbarounis, J.A. (1964), "Interaction of shear walls and frames", J. Struct. Div. ASCE, 90, 285-335.
- Kim, H.S. and Lee, D.G. (2003), "Analysis of shear wall with openings using super elements", Eng. Struct., 25, 981-991. https://doi.org/10.1016/S0141-0296(03)00041-5
- Lee, J., Bang, M. and Kim, J.Y. (2008), "An analytical model for high-rise wall-frame structures with outriggers", Struct. Design Tall Spec. Build., 17(4), 839-851. https://doi.org/10.1002/tal.406
- Leung, A.Y.T. (1985), "Microcomputer analysis of three-dimensional tall buildings", Comput. Struct., 21, 639-661. https://doi.org/10.1016/0045-7949(85)90142-7
- Leung, A.Y.T. and Wong, S.C. (1988), "Local-global distribution factors method for tall building frames", Comput. Struct., 29, 497-502. https://doi.org/10.1016/0045-7949(88)90402-6
- Ministero delle Infrastrutture (2008), DM 14/01/2008: Nuove norme tecniche per le costruzioni, Gazzetta Ufficiale 04.02.2008, No. 29. (in Italian)
- Mortelmans, F.K.E.C., de Roeck, G.P.J.M. and van Gemert, D.A. (1981), "Approximate method for lateral load analysis of high-rise buildings", J. Struct. Div. ASCE, 107, 1589-1610.
- Pekau, O., Zielinski, Z.A. and Lin, L. (1995), "Displacements and frequencies of tall building structures by finite story method", Comput. Struct., 54, 1-13. https://doi.org/10.1016/0045-7949(94)00316-U
- Pekau, O., Lin, L. and Zielinski, Z.A. (1996), "Static and dynamic analysis of tall tube-in-tube structures by finite story method", Eng. Struct., 18, 515-527. https://doi.org/10.1016/0141-0296(95)00136-0
- Rosman, R. (1964), "Approximate analysis of shear walls subjected to lateral loads", ACI J., 21, 717-732.
- Rosman, R. (1965), "Analysis of pierced shear walls", Wilhelm Ernst and Sohn, 1-64.
- Rosman, R. (1966), "Torsion of perforated concrete shafts", J. Struct. Div. ASCE, 95, 991-1010.
- Rutenberg, A. and Heidebrecht, A.C. (1975), "Approximate analysis of asymmetric wallframe structures", Build. Sci., 10, 27-35. https://doi.org/10.1016/0007-3628(75)90005-5
- Stafford, S.B. and Coull, A. (1991), Tall Building Structures: Analysis and Design, Wiley, New York.
- Stamato, M.C. and Mancini, E. (1973), "Three-dimensional interaction of walls and frames", J. Struct. Eng., 99, 2375-2390.
- Steenbergen, R.D.J.M. and Blaauwendraad, J. (2007), "Closed-form super element method for tall buildings of irregular geometry", Int. J. Solids Struct., 44, 5576-5597. https://doi.org/10.1016/j.ijsolstr.2007.01.017
- Taranath, S.B. (1988), Structural Analysis and Design of Tall Buildings, McGraw-Hill, New York.
- Taranath, S.B. (2005), Wind and Earthquake Resistant Buildings, Marcel Dekker, New York.
- Timoshenko, S. (1936), Theory of Elastic Stability, (First Edition), McGraw-Hill Book Company inc., New York.
- Vlasov, V. (1961), Thin-Walled Elastic Beams, (Second Edition), (Jerusalem: Israeli Program for scientific translation), US Science Foundation, Washington
- Wong, C.W. and Lau, S.L. (1989), "Simplified finite element analysis of three-dimensional tall building structures", Comput. Struct., 33, 821-830. https://doi.org/10.1016/0045-7949(89)90256-3
Cited by
- Comparison of shear lag in structural steel building with framed tube and braced tube vol.49, pp.3, 2014, https://doi.org/10.12989/sem.2014.49.3.297
- Seismic performance evaluation of mid-rise shear walls: experiments and analysis vol.59, pp.2, 2016, https://doi.org/10.12989/sem.2016.59.2.291
- Influence of wall flexibility on dynamic response of cantilever retaining walls vol.49, pp.1, 2014, https://doi.org/10.12989/sem.2014.49.1.001
- The effect of the warping deformation on the structural behaviour of thin-walled open section shear walls vol.84, 2014, https://doi.org/10.1016/j.tws.2014.07.009
- Tall buildings: secondary effects on the structural behaviour vol.170, pp.6, 2017, https://doi.org/10.1680/jstbu.16.00058
- Strengthening methods for existing wall type structures by installing additional shear walls vol.49, pp.4, 2014, https://doi.org/10.12989/sem.2014.49.4.523
- Structural analysis of high-rise buildings under horizontal loads: A study on the Intesa Sanpaolo Tower in Turin vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.07.009
- Backfill and subsoil interaction effects on seismic behavior of a cantilever wall vol.6, pp.2, 2014, https://doi.org/10.12989/gae.2014.6.2.117
- Conceptual Design of Tall and Unconventionally Shaped Structures: A Handy Analytical Method vol.17, pp.5, 2014, https://doi.org/10.1260/1369-4332.17.5.767
- Novel continuum models for coupled shear wall analysis vol.25, pp.10, 2016, https://doi.org/10.1002/tal.1267
- Cyclic Behaviour of Expanded Polystyrene (EPS) Sandwich Reinforced Concrete Walls vol.2018, pp.None, 2018, https://doi.org/10.1155/2018/7214236
- Structural Analysis of High-rise Buildings under Horizontal Loads: A Study on the Piedmont Region Headquarters Tower in Turin vol.13, pp.1, 2012, https://doi.org/10.2174/1874836801913010081
- A matrix-based method for the structural analysis of diagrid systems vol.193, pp.None, 2019, https://doi.org/10.1016/j.engstruct.2019.05.046
- Parametric design of diagrid tall buildings regarding structural efficiency vol.63, pp.1, 2012, https://doi.org/10.1080/00038628.2019.1704395
- Influence of the geometrical shape on the structural behavior of diagrid tall buildings under lateral and torque actions vol.2, pp.None, 2020, https://doi.org/10.1016/j.dibe.2020.100009
- New Trends Towards Enhanced Structural Efficiency and Aesthetic Potential in Tall Buildings: The Case of Diagrids vol.10, pp.11, 2020, https://doi.org/10.3390/app10113917