• Title/Summary/Keyword: lateral rigidity

Search Result 87, Processing Time 0.022 seconds

Application of Numerical Analysis for Sand Drain by the Multi-purpose Program of Soft Foundation Analysis (연약식반교양공법에 이용될 범용프로그램의 Sand Drain 공법에의 적용)

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1985
  • This study was carried out for the purpose of comparing in reference to sand drain in the next three different cases. First, The case of drain material (sand pile) has some rigidity during embankment and consolidation. Second, In usual case of no rigidity as a paper drain without permeability during embankment and consolidation Third, Check up clay behavior when above the two cases carried out respectively. This FEM analysis is consisted with Biot's consolidation equation when it is used for Christian Boehmer's numerical technique. The main results are obtained from above the Analysis When sand drain has some rigidity, the lateral and vertical deformation of clay foundation is restrained considerable amount and .exhibited bearing capacity of load as a pile According to the foundation in drained condition and untrained condition, the results are much variable in this analysis method. Also, The behaviors of stress path and pore water pressure met our expectation during , consolidation. This analysis should be considered to put into use of sand drain and design in future.

  • PDF

A Comprehensive Study for Two Damage Sites of Human Hair upon UV-B Damage

  • Song, Sang-Hun;Son, Seongkil;Kang, Nae Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Protection mechanisms for skin damage of ultraviolet (UV) absorbers in personal care products for protection against UV are well studied, but not for hair protection. The purpose of this study is to describe and compare the changes of physical property produced in human hair by doses of the UV-B exposure causing protein degradation. To observe the change of physical properties in hair, the experimental intensity of UV-B exposure has been established on the basis of statistical data from official meterological administration as daily one hour sunlight exposure for two weeks. Polysilicone-15, ethylhexyl methoxycinnamate (OMC), and octocrylene were employed for UV-B absorber, and those were treated to hair swatch by rubbing wash through shampoo and conditioner. Bending rigidity displayed kinetically successive reduction at high doses of UV exposure up to the 8,000 s, and exhibited different level at each sample of UV-B absorber. However, the values of Bossa Nova Technologies (BNT) for shinning factor were already saturable at the 2,000 s exposure except that treated with polysilicone-15. The differential scanning calorimetry (DSC) to measure a strength of inner protein produces a successive reduction of enthalpy as like a reduction of bending rigidity upon UV exposure. Surface roughness from lateral force microscope (LFM) acquired immediately after UV exposure show a saturable frictional voltage which has been also found in a saturable BNT data as the time of UV exposure increases. Through researching the DSC and the LFM, shinning of hair was much correlated to the protein damage at the surface, and bending rigidity could be regulated by the protein structural damage inside hair. Therefore, the optimization of efficient strategy for simultaneous prevention of hair protein on the surface and internal hair was required to maintain physical properties against UV.

COMPARISON OF RIGIDITY AND CASTABILITY IN DIFFERENT DESIGNS OF MAXILLARY MAJOR TITANIUM FRAMEWORK (타이타늄 상악 주연결장치에 디자인에 따른 주조성 및 견고성 비교)

  • Lee, Young-Jae;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.431-443
    • /
    • 2007
  • Statement of problem: Injuries along with discomfort may result on the oral mucosa when non-rigid material is used as the major connector in construction of RPD, since nonrigid major connectors transmit unstable forces throughout the appliance. Titanium which recently draws attention as a substitute of Co-Cr had a difficulty in fabricating due to high melting temperature but the development of casting technique makes it possible to apply to the clinical case. Purpose: The purpose of this study was to investigate the rigidity and the castability of titanium upper major connector by design and make a comparison with Co-Cr major connectors which are widely used in clinical cases now. Material and methods: Casting was done using CP-Ti(Grage 2) (Kobe still Co., Japan) for the experimental groups, and 4 various designs namely palatal strap, U-shaped bar, A-P strap, and complete palatal plate were casted and 5 of each designs were included in each group. For the experimental group, Universal testing machine (Model 4502; Instron, Canton, Mass) was used to apply vertical torsional force vertically to the horizontal plane of major connector. In the second experiment, Vertical compressive force was applied to the horizontal plane of major connector. As a comparative group, Co-Cr major connector was equally manufactured and underwent the same experimental procedures Strain rate was measured after constant loading for one minute duration, and statistical analysis was done with SPSS ver.10.0 for WIN(SPSS. Inc. USA). From the one-way ANOVA and variance analysis (P=0.05), Scheffe's multiple comparison test implemented. Results: 1. Least amount of strain was observed with complete palatal plate followed by A-P bar, palatal bar, and the U-shaped bar having most amount of strain. 2. In all designs of titanium major connector, less strain rate was observed under compressive loading than under torsional loading showing more resistance to lateral force. 3. For titanium major connector, less strain rate was observed when the force is applied to the first premolar area rather than to the second molar area indicating more strength with shorter length of lever. 4. In Comparison of Co-Cr major connector with titanium major connector, palatal strap and U-shaped bar designs showed higher strength under torsional force that is statically significant, and under compressive force, no significant difference was observed expert for U-shaped bar. 5. In titanium major connector, complete palatal plate showed lowest success rate in casting when compared with the Co-Cr major connector. Conclusion: Above results prove that when using titanium for major connector, only with designs capable of generating rigidity can the major connector have almost equal amount of rigidity as Co-Cr major connector and show lower success rate in casting when compared with the Co-Cr major connector.

Treatment of Fractures of the Lateral Malleolus using Locking Compression Plate (Locking Compression Plate를 이용한 족근 관절 외과 골절의 치료)

  • Ha, Sung-Sik;Hong, Ki-Do;Chung, Nam-Sik;Sim, Jae-Cheon;Ahn, Sang-Cheon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.9 no.1
    • /
    • pp.99-104
    • /
    • 2005
  • Purpose: The purpose of this study was to investigate usefulness of locking compression plate (LCP) as an open reduction technique by evaluating clinical results obtained from the patients with lateral malleolar fracture treated by internal fixation using LCP after open reduction. Materials and Methods: Among the patients with lateral malleolar fracture, the 28 patients who were treated by internal fixation using Locking compression plate after an open reduction and were able to be followed up for more than 6 months were included in this study. Final postoperative evaluation was done based on the Meyer's clinical and radiologic evaluation system. Results: All cases achieved anatomical reduction and fixation of the reduction postoperatively. 28 minutes were taken meaningly from the incision to the fixation of LCP plate after the anatomical reduction. Everage bony union time was 8.2 weaks, and the result was excellent in 23 cases (82%), good in 5 cases (17%) and poor result was abscent according to the criteria of Meyer et al. One case of post traumatic arthritis and one case of superficial infection on the operation site were found, but non-union, delayed union and malunion were not occurred. Conclusion: The internal fixation after open reduction using LCP is an effective treatment method in treating lateral malleolar fracture of the ankle since it offers advantages including easy application and a greater stability due to its capability of maintaining exact anatomical reduction even though the screw does not penetrate the medial cortex of fibular to add the stability and rigidity of the fixation.

  • PDF

The Failure Standard to Estimate the Behavior and Bearing Capacity for Connected-type Foundation of Transmission Tower in Clay (점토지반에 근입된 송전철탑 연결형 기초의 거동 특성 및 지지력결정을 위한 파괴기준)

  • Kyung, Doo-Hyun;Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.27-40
    • /
    • 2011
  • In this study, we performed model lateral load test for connected-type foundations of transmission tower with bar in clay, and proposed failure standard and measuring method to estimate ultimate lateral bearing capacity. For this study, we performed model lateral load tests in Iksan, Jeollabukdo and analyzed load-displacement characteristic of the model. We manufactured model foundation of transmission tower connected with bar and that considered a change of rigidity. We installed various measuring sensors to find general foundation behavior. From the test results, we measured, compared and analyzed load capacities, and then proposed failure standard to estimate bearing capacity for connecting type foundation.

Effect of Lateral Pile Rigidity of Offshore Drilled Shafts by Developing p-y Curves in Marine Clay (해상 현장타설 말뚝의 p-y 곡선 산정을 통한 횡방향 상대 강성 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom;Kim, Jeong-Hwan;Lee, Yang-Gu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.37-51
    • /
    • 2007
  • In this study, pile load tests have been carried out to develop new P-y curves and then, to investigate the effects of pile rigidities on laterally loaded offshore drilled shafts in Incheon marine clay. This paper consists mainly of two parts: the first part, performance of a series of lateral load tests on small- and full-scale piles under one- and two-way loadings and the second part, comparison between the measured and predicted results by using O'Neill's and Matlock's clay models. Based on the results obtained, it is shown that relatively good agreements in bending moments and lateral displacements were obtained between the measured results using calculated P-y curves and predicted ones by O'Neill's and Matlock's clay models. The cases were considered with varying rigidity factors based on pile diameter, length and subgrade soil reaction. Through comparisons, it is found that soil P-y curve influences highly the behavior of flexible pile rather than that of rigid pile.

Analytical Study on Behaviour of Plane Steel Frame with Semi-Rigid Beam-to-Column Connection (반강접 접합부를 갖는 평면 강골조의 거동에 관한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.483-492
    • /
    • 2009
  • In this study, nonlinear analysis of steel plane frame was performed using the refined plastic hinge method of advanced analysis techniques. In deterioration of stiffness in plastic zone, influences by flexural bending, residual stress, geometrical non-linearity, and semi-rigid connection are considered. And also, further reduced tangent modulus was used for geometrical non-linearity, top and seat angle were chosen for semi-rigid connection. Furthermore, 3 parameter power model was used for moment-rotation behaviour of beam to column connection. The loading conditions are combined with axial and lateral force and the inverse triangle distribution of lateral and eight type of analytical models were used in analysis. The results of analyses were compared with semi-rigid and rigid connection on behaviour of numerical analysis models. And also, the behaviors of frame with changes of semi-rigidity were analyzed by using the results obtained from MIIDAS-GENw.

The Size of Crowd Pressure According to Loading Patterns (가력유형별 군중하중의 크기에 관한 실험적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.128-129
    • /
    • 2016
  • This study is to categorize the loading of multiple persons on a vertical building elements into three types to test the size of crowd pressure under each loading patterns. The loading patterns is divided under the combination of loading method and loading persons. The loading method is categorized into the method of instantaneous loading of hand on a force plate and the method of continuous loading. The loading persons has been composed of 1~5 persons under the loading patterns. The loading patterns is also divided into lateral loading, longitudinal loading, and agglomeration loading. The subject group has been composed of 12 males in 20s. The load measurement device(size 1800×600×36mm, capacity 20kN, rigidity 28kN/cm) has been designed and manufactured directly. To eliminate the difference of individual, the size of crowd pressure has been converted into the strength to weight ratio (maximum load/weight) for computation. The strength to weight ratio in lateral loading was about 0.91 under instantaneous loading and about 0.47 under continuous loading. The strength to weight ratio in longitudinal loading was about 0.65 under instantaneous loading and about 0.36 under continuous loading. The strength to weight ratio in agglomeration loading was about 0.65 under instantaneous loading and about 0.36 under continuous loading.

  • PDF

Optimization of Sky-Bridge location at coupled high-rise buildings considering seismic vulnerability functions

  • Arada, Ahmad Housam;Ozturk, Baki;Kassem, Moustafa Moufid;Nazri, Fadzli Mohamed;Tan, Chee Ghuan
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.385-400
    • /
    • 2022
  • Sky-bridges between adjacent buildings can enhance lateral stiffness and limit the impact of lateral forces. This study analysed the structural capabilities and dynamic performances of sky-bridge-coupled buildings under various sets of ground motions. Finite Element (FE) analyses were carried out with the link being iteratively repositioned along the full height of the structures. Incremental dynamic analysis (IDA) and probabilistic damage distribution were also applied. The results indicated that the establishment of sky-bridges caused a slight change in the natural frequency and mode shapes. The sky-bridge system was shown to be efficient in controlling displacement and Inter-Storey Drift Ratio (%ISDR) and reducing the probability of damage in the higher floors. The most efficient location of the sky-bridge, for improving its rigidity, was found to be at 88% of the building height. Finally, the effects of two types of materials (steel and concrete) and end conditions (hinged and fixed) were studied. The outcomes showed that coupled buildings with a sky-bridge made of steel with hinged connection could withstand ground motions longer than those made of concrete with fixed connection.

Effects of the stiffness of an inclusion on the mechanical behavior of an aluminum alloy plate with a lateral notch

  • Moulgada Abdelmadjid;Zagane Mohammed El Sallah;Murat Yaylaci;Ait Kaci Djafar;Benouis Ali;Baltach Abdelghani;Sevval Ozturk;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.63-72
    • /
    • 2024
  • This study delves into the interaction dynamics between lateral notches and inclusions, providing valuable insights for more effective engineering of structural components. By employing the finite element method, the research analyzes how inclusions affect the dimensions and contours of the plastic zone under confined plasticity conditions. Several parameters were investigated, including loading influence, the distance between the inclusion and notch tip, inclusion stiffness, and the distribution of Von Mises stress, as well as normal stresses σxx and σyy, and Comparison between different stresses. Examining stress distributions under varying loading conditions reveals a significant intensification, particularly near the crack tip. Moreover, the presence of an inclusion near the notch base reduces both the size and shape of the plastic zone. The distribution of the stresses for different loads knows an increase in intensity, especially near the crack head, which is the most requested by the tensile forces on its upper part, which can cause either the crack's initiation or opening, inducing significant stresses.