• 제목/요약/키워드: laser fusion

검색결과 292건 처리시간 0.025초

지르칼로이-4 피복관을 이용한 레이저용접성 연구 (A Study on the Laser Beam Weldability Using Zircaloy-4 Cladding Tube)

  • 박진석;김동균;김상태;양명승;김수성;이정원
    • Journal of Welding and Joining
    • /
    • 제20권6호
    • /
    • pp.796-801
    • /
    • 2002
  • Corrosion and tensile properties of zircaloy-4 cladding tube having a laser welding part in elevated temperature are studied to present the criterion of quality evaluation in nuclear reactor and find the scientific basis of SCC, with laser welding method using by coupling up cladding tube to end cap. In the result of tensile test($400^{\circ}C$), the fracture is not happened in the welding part but base metal and the result of corrosion test($400^{\circ}C$ 1500psi steam), corrosion rate of the molten zone and PMZ is a little higher than the other zone.

대출력 Gauss형 Nd:글라스 레이저 비임의 증폭특성에 관한 연구 (A Study on the Amplification Characteristics of High-Power Gaussian Nd:Glass Laser Beam)

  • 강형부;장용무
    • 대한전기학회논문지
    • /
    • 제36권10호
    • /
    • pp.741-747
    • /
    • 1987
  • The high-power Nd:glass system with five-stage amplifier was designed and its amplification characteristics was studied for developing high-power Nd:glass laser system as an energy driver of inertial confinement fusion(ICF). In order to study the amplification characteristics of remporal and spacial Gaussian laser beam, the dependence of them on pumping efficiency and rod loss were studied and discussed. The output energy of this system using phosphate Nd glass rod(LHG-7,LHG-8) and silicate Nd glass rod(LSG-91H), respectively, was calculated by the computer simulation using Avizonis-Grotbeck and Frantz Nodvik equations. As results of this simulation, it was found that the shorter the risetime of laser pulse, the larger the amplification factor and that the larger peak value of laser pulse, the lower the amplification factor. The output inergies of 179J, 344J, and 7J were obtained by the designed five-stage amplified high-power Nd:glass laser system using glass rods of LHG-7,LHG-8, and LSG-91H, respectively. From the results it was found that the laser system using the LHG-8 glass rod was the most excellent one among the systems and the cross section for stimulated emission of the gain coefficient was essentially important parameter for the amplification characteristics.

  • PDF

단순화된 설계인자에 의한 레이저표면경화공정의 퍼지제어기 설계 (Fuzzy Logic Controller Design By Means Of Characteristic Design Parameters in a LASER Surface Hardening Process)

  • 박영준;김재훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.292-292
    • /
    • 2000
  • Since high-power CO$_2$ Laser can be make a high densed energy to Local processing area, manufacturing processes using the laser can be processed for very Localized areas at a very fast rate with minimal or no distortion. Accordingly, the laser has been widely used in the fields of thermal manufacturing processes such as welding, fusion cutting, grooving, and heat treatment of metals. In particular, interest in the laser heat treatment process has grown tremendously in the past few years. In this process, maintaining the uniform hardening depth is important problem to obtain good quality products and to reduce heat induced distortion and residual stress. For achieving this objective, we introduced a new design technique of a fuzzy logic controller that greatly simplified the design procedure by defining several simplified design parameters. In the design procedure, the major design parameters of the controller are characterized by identifying several common aspects. From a series of simulation results, we found that the proposed design technique can be effectively used to design of a fuzzy logic controller for the LASER surface hardening process.

  • PDF

보론 도핑 여부에 따른 DLC 박막의 레이저 가공 특성 변화 연구 (A Study on the Characteristics of Laser Processing in the DLC Thin Film according to Boron Doped Content)

  • 손예진;최지연;김태규
    • 열처리공학회지
    • /
    • 제32권4호
    • /
    • pp.155-160
    • /
    • 2019
  • Diamond Like Carbon (DLC) is a metastable form of amorphous carbon that have superior material properties such as high mechanical hardness, chemical inertness, abrasion resistance, and biocompatibility. Furthermore, its material properties can be tuned by additional doping such as nitrogen or boron. However, either pure DLC or doped DLC show poor adhesion property that makes it difficult to apply contact processing technique. Therefore we propose ultrafast laser micromachining which is non-contact precision process without mechanical degradation. In this study, we developed precision machining process of DLC thin film using an ultrafast laser by investigating the process window in terms of laser fluence and laser wavelength. We have also demonstrated various patterns on the film without generating any microcracks and debris.

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk;Lee, Ji Hye;Hwang, Hyonseok;Kwon, Chan Ho;Kim, Hong Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3618-3624
    • /
    • 2012
  • Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

Effect of Pulse Shapes on Weld Defects in Pulsed Laser Welding of Stainless Steel

  • Kim, Jong-Do;Kil, Byung-Lea;Kim, Young-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1270-1278
    • /
    • 2004
  • This paper describes the effectiveness of laser pulse shaping in eliminating weld defects such as porosity, cracks and undercuts in pulsed Nd:YAG laser welding. A large porosity was formed in a keyhole mode of deeply penetrated weld metal of any stainless steel. Solidification cracks were present in STS 310S with above 0.017%P and undercuts were formed in STS 303 with about 0.3%S. The conditions for the formation of porosity were determined in further detail in STS 316. With the objectives of obtaining a fundamental knowledge of formation and prevention of weld defects, the fusion and solidification behavior of a molten puddle was observed during laser spot welding of STS 310S through a high speed video photographing technique. It was deduced that cellular dendrite tips grew rapidly from the bottom to the surface, and consequently residual liquid remained at the grain boundaries in wide regions and enhanced the solidification cracking susceptibility. Several laser pulse shapes were investigated and optimum pulse shapes were proposed for the reduction and prevention of porosity and solidification cracking.

내식성 향상을 위한 마그네슘합금의 ZrO2 적용 레이저 표면 처리 (Laser Surface Treatment of Magnesium Alloy using ZrO2 for Corrosion Resistance)

  • 윤상우;강동찬;김주한
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.93-100
    • /
    • 2016
  • The laser surface treatment of magnesium alloy was studied. $ZrO_2$ was used as sintering ceramics, and its corrosion resistance was verified. Appropriate laser parameters were proposed for homogeneous solidification of the sintered layer. The chemical compositions of the sintered layer were analyzed with laser-induced breakdown spectroscopy. $Na_2SO_4$ was used for a corrosion test, and the resistance of the sintered sample was confirmed. The microstructures of the sintered parts were also examined. The solidified grains on the top sintered surface were observed; however, reasonable fusion was obtained at the interface between the baseline and the ceramics. Laser surface treatment using $ZrO_2$ on magnesium alloy showed an improvement in corrosion resistance.

Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

  • Park, Jung-Shin;Yoon, Jun-Hee;Kim, Hyung-Jun;Huh, Young-Duk;Yoon, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.819-824
    • /
    • 2010
  • We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

레이저 유도 시스템을 이용한 AGV의 경로추적 (Path Tracking for AGV using Laser guidance system)

  • 박정제;김정민;도주철;김성신;배선일
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.120-126
    • /
    • 2010
  • This paper presents to study the path tracking method of AGV(autonomous guided vehicle) which has a laser guidance system. An existing automatic guided vehicles(AGVs) which were able to drive on wired line only had a automatic guidance system. However, the automatic guidance systems that those used had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the laser guidance system which is consisted of a laser navigation and gyro, encoder. That is robust against noise, and flexible according to working environment through sensor fusion. The laser guidance system can do a perfect autonomous driving. However, the commercialization of perfect autonomous driving system is difficult, because the perfect autonomous driving system must recognize the whole environment of working space. Hence, this paper studied the path tracking of AGV using laser guidance system without wired line. The path tracking method is consisted of virtual path generation method and driving control method. To experiment, we use the fork-type AGV which is made by ourselves, and do a path tracking experiments repeatedly on same experimental environment. In result, we verified that proposed system is efficient and stable for actual fork-type AGV.