• Title/Summary/Keyword: laser displacement sensor

Search Result 171, Processing Time 0.025 seconds

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Analysis and compensation of positioning error for aerostatic stage (공기정합 스테이지의 위치결정오차 분석 및 보정)

  • 황주호;박천홍;이찬흥;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

A Short-term Dynamic Displacement Estimation Method for Civil Infrastructures (사회기반 건설구조물의 단기 동적변위 산정기법)

  • Choi, Jaemook;Chung, Junyeon;Koo, Gunhee;Kim, Kiyoung;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.249-254
    • /
    • 2017
  • The paper presents a new short-term dynamic displacement estimation method based on an acceleration and a geophone sensor. The proposed method combines acceleration and velocity measurements through a real time data fusion algorithm based on Kalman filter. The proposed method can estimate the displacement of a structure without displacement sensors, which is typically difficult to be applied to earthquake or fire sites due to their requirement of a fixed rigid support. The proposed method double-integrates the acceleration measurement recursively, and corrects an accumulated integration error based on the velocity measurement, The performance of the proposed method was verified by a lab-scale test, in which displacement estimated by the proposed method are compared to a reference displacement measured by laser doppler vibrometer (LDV).

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors Using a Commercial Single Chip Solution (상용 Single Chip Solution을 이용한 정전용량형 변위 센서 신호 처리 모듈 개발)

  • Kim J.A.;Kim J.W.;Eom T.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.31-32
    • /
    • 2006
  • A signal conditioning circuit for capacitive sensors was developed using a commercial single chip solution. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. Up to now, several companies already have succeeded in the development of the capacitive sensors system and they are commercially available in the market. In this research, to construct the signal processing circuits more easily and simply, we used a universal LVDT signal conditioner (AD698). Since the AD698 provides one chip solution for a basic signal processing including modulation and demodulation using various internal components, we can build the processing circuits successfully with minimal additional circuits: a compensation circuits for the drift caused by the bias current of OP amplifiers and a fine adjustment circuit for the elimination of nonlinearity. The signal processing circuits shows nonlinearity less than 0.05% in the comparison with a laser interferometer.

  • PDF

A Study on the Measurement of the Pipeline Displacement Vibration Using Accelerometers (가속도계를 이용한 배관 변위 진동 계측에 관한 연구)

  • Suh, Jin Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.476-482
    • /
    • 2014
  • The stress analysis of the pipeline is required in any kind of plant for its safe operation. For this, the displacement vibration data measured at many locations of the pipeline should be provided. In reality, the installation of the non-contact type displacement sensors such as laser displacement sensors or eddy current type proximity sensors in a narrow and confined region in the vicinity of the pipeline is almost impracticable. In this work, the general purpose piezo-ceramic accelerometers were attached on the measuring points on the pipeline and the acceleration vibration signal was acquired. The measured acceleration signal was low pass filtered and then downsampled. The resulting acceleration signal was transformed into both the time-domain and frequency-domain displacement signal utilizing the fast Fourier transform techniques. All the procedures are presented in detail. It is demonstrated that the measurement of the pipeline acceleration by using contact type accelerometers can be made for the purpose of providing the required displacement data for the stress analysis of the pipeline.

Energy harvesting and power management of wireless sensors for structural control applications in civil engineering

  • Casciati, Sara;Faravelli, Lucia;Chen, Zhicong
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.299-312
    • /
    • 2012
  • The authors' research efforts recently led to the development of a customized wireless control unit which receives the real-time feedbacks from the sensors, and elaborates the consequent control signal to drive the actuator(s). The controller is wireless in performing the data transmission task, i.e., it receives the signals from the sensors without the need of installing any analogue cable connection between them, but it is powered by wire. The actuator also needs to be powered by wire. In this framework, the design of a power management unit is of interest only for the wireless sensor stations, and it should be adaptable to different kind of sensor requirements in terms of voltage and power consumption. In the present paper, the power management efficiency is optimized by taking into consideration three different kinds of accelerometers, a load cell, and a non-contact laser displacement sensor. The required voltages are assumed to be provided by a power harvesting solution where the energy is stored into a capacitor.

Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot (다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구)

  • Jung, Chang-Wook;Noh, Tae-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1071-1076
    • /
    • 2011
  • NC machines are generally used for machining operations because of their position accuracy, path accuracy, and machining reaction force. However, some NC machines require a very large space and are expensive. Recently, industrial articulated robot arms with large handling capability and wrist torque have been developed and the corresponding sensor technology has been improved. A machining robot for three-dimensional large curved objects was developed on the basis of an automatic-path-generation method. A self-position-compensation method with a laser displacement sensor was adopted for the six-axis robot developed, because the large articulated robot arms had poor position accuracy. An automatic-path-generation method using specific points was adopted to reduce the number of teaching points and time. In order to determine the proper machining conditions, various machining conditions such as tool rotation speed, cutting angle, cutting depth, and tool moving speed, were evaluated.

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE) (P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작)

  • Cho, Seongwoo;Glasser, Melodie;Kim, Jaegyu;Ryu, Jeongjae;Kim, Yunjeong;Kim, Hyejin;Park, Kang-Ho;Hong, Seungbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.157-160
    • /
    • 2019
  • P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

Development of a profile measuring system for conductor roll (전기도금 롤의 형상 측정시스템 개발)

  • Choi, Yong-Jun;Jun, Sung-Bai;Lee, Eung-Suk;Kim, Hyo-Sung;Jang, Ji-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1730-1741
    • /
    • 1997
  • In this paper, we developed a surface profile measuring system and a profile measuring software for EGL conductor roll. For the profilemeter, we designed a linear guided control system with Laser displacement sensors and developed a 3-dimensional software. Additionally, the AC motor and AC motor driver were used to control the precise position of linear guide system. The measuring principle of the Laser sensor is optical triangulation method. Also, two Laser sensors were used to remove the disturbance and vibration effects of the linear guide system.

Development of a Robotic System for Measuring Hole Displacement Using Contact-Type Displacement Sensors (접촉식 변위센서를 이용한 홀 변위 측정 로봇시스템 개발)

  • Kang, Hee-Jun;Kweon, Min-Ho;Suh, Young-Soo;Ro, Young-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • For the precision measurement of industrial products, the location of holes inside the products, if they exist, are often selected as feature points. The measurement of hole location would be performed by vision and laser-vision sensor. However, the usage of those sensors is limited in case of big change of light intensity and reflective shiny surface of the products. In order to overcome the difficulties, we have developed a hole displacement measuring device using contact-type displacement sensors (LVDTs). The developed measurement device attached to a robot measures small displacement of a hole by allowing its X-Y movement due to the contact forces between the hole and its own circular cone. The developed device consists of three plates which are connected in series for its own function. The first plate is used for the attachment to an industrial robot with ball-bush joints and springs. The second and third plates allow X-Y direction as LM guides. The bottom of the third plate is designed that various circular cones can be easily attached according to the shape of the hole. The developed system was implemented for its effectiveness that its measurement accuracy is less than 0.05mm.