DOI QR코드

DOI QR Code

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE)

P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작

  • Cho, Seongwoo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Glasser, Melodie (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jaegyu (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ryu, Jeongjae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yunjeong (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Hyejin (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Park, Kang-Ho (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Hong, Seungbum (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 조성우 (한국과학기술원 신소재공학과) ;
  • ;
  • 김재규 (한국과학기술원 신소재공학과) ;
  • 류정재 (한국과학기술원 신소재공학과) ;
  • 김윤정 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 김혜진 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 박강호 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 홍승범 (한국과학기술원 신소재공학과)
  • Received : 2018.11.22
  • Accepted : 2018.12.20
  • Published : 2019.03.01

Abstract

P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

Keywords

JJJRCC_2019_v32n2_157_f0001.png 이미지

Fig. 1. Fabrication process of a multilayer actuator and a photograph of device. (a) Bottom electrode deposition on flexible PET substrate, (b) tape masking of electrode for solution processing, (c) spin coating of P(VDF-TrFE-CFE), (d) detachment of tape mask, (e) internal electrode deposition and electrode connection, (f) tape masking of electrode for solution processing, (g) spin coating of P(VDF-TrFE-CFE), (h) detachment of tape mask, (i) top electrode deposition and electrode connection, and (j) two layered piezoelectric vibrational actuator.

JJJRCC_2019_v32n2_157_f0002.png 이미지

Fig. 3. PFM amplitude and phase measurement. (a) PFM amplitude and phase as a function of ac drive frequency to the PFM tip, (b) pulse voltage input signal to the sample, and (c) coresponding PFM amplitude, induced by the input voltage in (b), as a function of time at a fixed point.

JJJRCC_2019_v32n2_157_f0003.png 이미지

Fig. 4. Laser vibrometer measurement. Photographs of (a) laser vibrometer setup and (b) 2 layer piezoelectric vibrational device. Plots of (c) frequency scan data of velocity of 2 layer actuator and (d) vibrational velocity of 2 layer actuator at resonance frequency of 1,300 Hz.

JJJRCC_2019_v32n2_157_f0004.png 이미지

Fig. 2. (a) Cross-sectional SEM image and (b) x-ray diffraction (XRD) pattern of P(VDF-TrFE-CFE) single layer.

References

  1. S. Wang, J. Y. Oh, J. Xu, H. Tran, and Z. Bao, Acc. Chem. Res., 51, 1033 (2018). [DOI: https://doi.org/10.1021/acs.accounts.8b00015]
  2. S. J. Kang, Y. J. Park, J. Y. Hwang, H. J. Jeong, J. S. Lee, K. J. Kim, H. C. Kim, J. Huh, and C. Park. Adv. Mater., 19, 581 (2007). [DOI: https://doi.org/10.1002/adma.200601474]
  3. D. Kim, S. Hong, J. Hong, Y. Y. Choi, J. Kim, M. Park, T. H. Sung, and K. No, J. Appl. Polym. Sci., 130, 3842 (2013). [DOI: https://doi.org/10.1002/app.39415]
  4. Y. J. Park, S. J. Kang, C. Park, K. J. Kim, H. S. Lee, M. S. Lee, U. I. Chung, and I. J. Park, Appl. Phys. Lett., 88, 242908 (2006). [DOI: https://doi.org/10.1063/1.2207831]
  5. Y. Y. Choi, T. G. Yun, N. Qaiser, H. Paik, H. S. Roh, J. Hong, S. Hong, S. M, Han, and K. No, Sci. Rep., 5, 10728 (2015). [DOI: https://doi.org/10.1038/srep10728]
  6. S. J. Kang, Y. J. Park, J. Sung, P. S. Jo, C. Park, K. J. Kim, and B. O. Cho, Appl. Phys. Lett., 92, 012921 (2008). [DOI: https://doi.org/10.1063/1.2830701]
  7. H. Paik, Y. Y. Choi, S. Hong, and K. No, Sci. Rep., 5, 13209 (2015). [DOI: https://doi.org/10.1038/srep13209]
  8. J. Ryu, K. No, Y. Kim, E. Park, and S. Hong, Sci. Rep., 6, 36176 (2016). [DOI: https://doi.org/10.1038/srep36176]
  9. S. T. Choi, J. O. Kwon, and F. Bauer, Sens. Actuators, A, 203, 282 (2013). [DOI: https://doi.org/10.1016/j.sna.2013.08.049]
  10. M. R. Gadinski, Q. Li, G. Zhang, X. Zhang, and Q. Wang, Macromolecules, 48, 2731 (2015). [DOI: https://doi.org/10.1021/acs.macromol.5b00185]
  11. D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998). [DOI: https://doi.org/10.1088/0034-4885/61/9/002]