• Title/Summary/Keyword: laplace transforms

Search Result 90, Processing Time 0.019 seconds

Transient response and performance of a three-dimensional straight fin (3차원 직선핀의 과도응답 및 성능)

  • 오원균;조진호;서정일;조종철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.753-763
    • /
    • 1989
  • The transient response of a three-dimensional straight fin of constant cross sectional area and perimeter with unequal top, bottom, left, right and tip surface convection coefficients is analyzed using separation variables and Laplace transforms when the fin base is subjected to a step change in temperature. The three-dimensional effects of fin dimensions and unequal fin surface convection coefficients on the fin performance which is expressed in terms of the heat flowrates through the fin base are investigated, and errors in one-dimensions and unequal fin surface coefficients. Typical results are represented in tabular and graphical forms.

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY

  • Zenkour, Ashraf M.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.435-454
    • /
    • 2016
  • This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.

Generalized Outage Probability of STTD System in Rayleigh Fading Channel (레일레이 페이딩 채널에서 STTD 시스템의 일반화된 오수신확률)

  • 남우춘;한영열
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1025-1031
    • /
    • 2001
  • In this paper, we derive the outage probability of cellular mobile system with STTB(Space Time Transmitter Diversity) scheme where the received radio signals and interferers experience Rayleigh fading and AWGN. The new probability density function of L independent identically distributed interferers is derived using Laplace transforms. We express the probability of outage as a function of the average-signal to average-interference power ratio and the signal to noise ratio. In addition, the frequency reuse distance which is one of the key parameters in the design of cellular systems is analyzed.

  • PDF

Dynamic analysis of a magneto-electro-elastic material with a semi-infinite mode-III crack under point impact loads

  • Feng, Wenjie;Liu, Jinxi
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.609-623
    • /
    • 2007
  • The problem of a semi-infinite magneto-electro-elastically impermeable mode-III crack in a magneto-electro-elastic material is considered under the action of impact loads. For the case when a pair of concentrated anti-plane shear impacts, electric displacement and magnetic induction impacts are exerted symmetrically on the upper and lower surfaces of the crack, the magneto-electro-elastic field ahead of the crack tip is determined in explicit form. The dynamic intensity factors and dynamic energy density factor are obtained. The method adopted is to reduce the mixed initial-boundary value problem, by using the Laplace and Fourier transforms, into three simultaneous dual integral equations, one of which is converted into an Abel's integral equation and the others into a singular integral equation with Cauchy kernel. Based on the obtained fundamental solutions of point impact loads, the solutions of two kinds of different loading cases are evaluated by integration. For some particular cases, the present results reduce to the previous results.

The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory

  • Alzahrani, Faris S.;Abbas, Ibrahim A.
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.369-386
    • /
    • 2016
  • In this work, the two-dimensional generalized magneto-thermoelastic problem of a fiber-reinforced anisotropic material is investigated under Green and Naghdi theory of type III. The solution will be obtained for a certain model when the half space subjected to ramp-type heating and traction free surface. Laplace and exponential Fourier transform techniques are used to obtain the analytical solutions in the transformed domain by the eigenvalue approach. The inverses of Fourier transforms are obtained analytically. The results have been verified numerically and are represented graphically. Comparisons are made with the results predicted by the presence and absence of reinforcement and magnetic field.

A review of numerical approach for dynamic response of strain gradient metal foam shells under constant velocity moving loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.349-362
    • /
    • 2020
  • Dynamic characteristics of a scale-dependent porous metal foam cylindrical shell under a traveling load have been explored within this article based on a numerical approach. Within the material texture of the metal foams, uniform and non-uniform porosities may be dispersed. Based upon differential quadrature method (DQM) and Laplace transforms, the equations of motion for a shear deformable scale-dependent shell may be solved numerically. Scale-dependent shell modeling has been provided based upon strain gradient elasticity. Solving the equations will give the shell deflection as a function of load speed. Also, it is reported that shell deflection relies on the porosity dispersion and strain gradient influences.

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

The Evaluation of the Net Present Value and the Derivation of the Internal Rate of Return with the Alternatives (대체안의 순현재가치 평가와 내부수익율 유도에 대한 연구)

  • 박상민;이근희
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.29
    • /
    • pp.30-36
    • /
    • 1994
  • This paper has provided a systematic technique, the evaluation of the distribution with the NPV ana the derivation of the IRR in the investment alternatives, for the cost estimating analysts. The proposals of investment alternatives are included the venture capital under risk and probabilities at each events, within the cash inflows are occuring at random timing. Therefore. we have considered the followings : 1) the first cash outflow is deterministic. 2) the cash inflows are random variables with known distributions. 3) the lengths of the time intervals between the cash inflows are independently distributed and independent of the cash inflows. In this paper. the first two moments of the distribution, the Laplace Transforms and the convolutions are computed for both independent cash inflows and mutually exclusive alternatives as in the case of quite correlated cash inflows.

  • PDF

GENERALIZED THERMOELASTICITY WITH TEMPERATURE DEPENDENT MODULUS OF ELASTICITY UNDER THREE THEORIES

  • Ezzat, M.;Zakaria, M.;Abdel-Bary, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.193-212
    • /
    • 2004
  • A new model of generalized thermoelasticity equations for isotropic media with temperature-dependent mechanical properties is established. The modulus of elasticity is taken as a linear function of reference temperature. The present model is described both generalizations, Lord Shulman (L-S) theory with one relaxation time and Green-Lindsay (G-L) with two relaxation times, as well as the coupled theory, instantaneously. The method of the matrix exponential, which constitutes the basis of the state space approach of modern control theory, applied to two-dimensional equations. Laplace and Fourier integral transforms are used. The resulting formulation is applied to a problem of a thick plate subject to heating on parts of the upper and lower surfaces of the plate that varies exponentially with time. Numerical results are given and illustrated graphically for the problem considered. A comparison was made with the results obtained in case of temperature-independent modulus of elasticity in each theory.