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EFFECTS OF PHASE-LAGS AND VARIABLE

THERMAL CONDUCTIVITY IN A

THERMOVISCOELASTIC SOLID WITH A

CYLINDRICAL CAVITY

Ashraf M. Zenkour

Abstract. This paper investigates the effect of dual-phase-lags
on a thermoviscoelastic orthotropic solid with a cylindrical cav-
ity. The cylindrical cavity is subjected to a thermal shock varying
heat and its material is taken to be of Kelvin-Voigt type. The
phase-lag thermoelastic model, Lord and Shulman’s model and the
coupled thermoelasticity model are employed to study the ther-
momechanical coupling, thermal and mechanical relaxation (vis-
cous) effects. Numerical solutions for temperature, displacement
and thermal stresses are obtained by using the method of Laplace
transforms. Numerical results are plotted to illustrate the effect
phase-lags, viscoelasticity, and the variability thermal conductivity
parameter on the studied fields. The variations of all field quanti-
ties in the context of dual-phase-lags and coupled thermoelasticity
models follow similar trends while the Lord and Shulman’s model
may be different. The influence of viscosity parameter and variabil-
ity of thermal conductivity is very pronounced on temperature and
thermal stresses of the thermoviscoelastic solids.

1. Introduction

Viscoelasticity is of interest in various engineering applications due
to a variety of microphysical processes. Most solids exhibit viscous ef-
fects when subjected to dynamic loading and for this reason the linear
viscoelasticity has been remained as an important area of research. The
constitutive relations for many structures can be approximated by the
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Nomenclature

cij isothermal elastic constants
CE specific heat at constant strain
k0 thermal conductivity at reference temperature T0
K0,K1,K2 modified Bessel’s functions of first kind of orders 0, 1, 2
k∗1(≡ k1/k0) slope of the thermal conductivity-temperature curve
Kr thermal material coefficient
(r, θ, z) cylindrical coordinates
T absolute temperature
t0 viscous damping parameter
T0 reference temperature
tΘ, t finite times required for thermal equilibrium
~q heat flows vector
ur radial displacement
uz axial displacement
εr, εθ radial and hoop strains
uθ hoop displacement
βij thermal elastic coupling components
ρ material density
σr, σθ, σz radial, hoop and axial stresses
Θ = T − T0 temperature increment (|Θ/T0| ≪ 1)

linear viscoelasticity theory. This theory may be extended to the corre-
sponding one of thermos-viscoelasticity theory at finite strains. Different
investigations are dealt with generalized or coupled thermoviscoelastic
problems for many applications [1]-[9]. Kovalenko and Karnaukhov [10]
have presented a generalized linearized theory of thermoviscoelasticity
that included effect of heat formation. Equations of motion are given
of state together for the energy with the linearized boundary conditions
for large initial deformations. Drozdov [11] has derived a constitutive
model for the viscoelastic behavior of polymers at finite strains which
is rather simple to be employed in engineering applications. Kundu
and Mukhopadhyay [12] have considered the distribution of displace-
ments, temperature, and stresses in a homogeneous isotropic viscoelastic
medium with a spherical cavity. They have taken into account the re-
laxation effect and solve this problem in the context of generalized ther-
moelasticity and used the Laplace transform. Baksi et al. [13] have ob-
tained the basic equations of the problems of generalized thermoelastic-
ity in an infinite rotating magneto-thermo-viscoelastic media including
heat sources with one relaxation parameter. The eigenvalue approach
has been used to solve these equations to determine the field quanti-
ties. Kar and Kanoria [14] have studied the thermoviscoelastic stresses,
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in the context of generalized theories of thermoelasticity, in a homoge-
neous viscoelastic isotropic spherical shell. Kanoria and Mallik [15] have
obtained the thermoviscoelastic field quantities in a homogeneous, in-
finite Kelvin-Voigt-type viscoelastic, thermally conducting medium un-
der periodically varying heat sources. Ezzat et al. [16] have applied
the governing coupled fractional relaxation equations in the frame of
the thermo-viscoelasticity with fractional order heat transfer to the one-
dimensional problem with heat sources. Deswal and Kalkal [17] have
presented a two-temperature model for a half-space problem in the con-
text of fractional order micro-polar thermoviscoelasticity. Deswal and
Kalkal [18] have discussed the effects of phase-lags on wave propagation
in a 3D thermoelastic medium in the domain of three-phase-lag theory
with viscosity and two-temperature parameter. This article deals with
the thermo-viscoelastic interaction of a conducting orthotropic solid of
variable thermal conductivity including a cylinder cavity. The bound-
aries of the cylinder are subjected to a time-dependent thermal shock
and its surface is traction free. The thermoelastic interactions in this
solid in the context of a generalized thermoelasticity with dual-phase-
lags (DPLs) [19]-[23] has been investigated. The present DPLs model
developed by Tzou [24],[25] is an extension to the well-known general-
ized thermoelasticity theory [26]-[28]. The numerical estimates of the
radial displacement, temperature and thermal stresses are obtained for
thermoviscoelastic material. A comparison of the results for different
theories (DPL model, LS model and CTE model) is presented and the
effects of viscosity and variability of thermal conductivity parameters
are also shown. Neglecting the viscosity coefficient and variability of
thermal conductivity to illustrated some special cases of the problem.

2. Basic equations

Let us consider a viscoelastic orthotropic solid with a cylindrical cav-
ity at a reference temperature T0. The surface of solid is traction-free
and the solid itself is under a time-dependent thermal shock. Kelvin-
Voigt model of linear viscoelasticity may be employed to describe the
viscoelastic nature of the material of the solid. The present problem is
considered as axially symmetric one and accordingly the displacement
field of the body is reduced to

ur = u(r, t), uθ(r, t) = uz(r, t) = 0,(1)
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and their non-vanished strain components are given by

εr =
∂u

∂r
, εθ =

u

r
.(2)

The constitutive stress-strain relations for a Kelvin-Voigt-type solid take
the form [29]











σr

σθ

σz











=

(

1 + t0
∂

∂t

)







c11 c12

c12 c22

c13 c23







{

∂u
∂r
u
r

}

−











β11

β22

β33











Θ.(3)

The viscous damping parameter t0 represents the mechanical relaxation
time due to viscosity. Neglecting the body forces to get the equation of
motion of the cylindrical cavity in the form

∂σr
∂r

+
σr − σθ

r
= ρ

∂2u

∂t2
.(4)

Equation (3) can be used in the above equation of motion to get
(

1 + t0
∂

∂t

)

[

c11

(
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∂r2
+

1

r

∂u
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)

− c22
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r2

]

(5)

= ρ
∂2u

∂t2
+ β11
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+ (β11 − β22)

Θ

r
.

The modified Fourier’s law is given by

(6)

(

1 + tq
∂

∂t

)

~q = −Kr

(

1 + tΘ
∂

∂t

)

∇Θ.

The delay time tΘ is called the PL of temperature gradient while the
other time tq is said to be the PL of heat flux. The target of the PL of
heat flux tq is to ensure that the heat conduction equation will predict fi-
nite speeds of heat propagation. So, the equation of energy conservation
may be written as

(7) −∇.~q = ρCE
∂Θ

∂t
+ T0

∂

∂t

(

β11
∂u

∂r
+ β22

u

r

)

.

Eliminating ~q by using equations (6) and (7), the heat conduction equa-
tion with DPLs and ignoring the heat sources takes the form
(8)
(

1 + tΘ
∂

∂t

)

(KrΘ,r),r =
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∂
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)
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.
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The governing field equations in the context of linear generalized ther-
moelasticity with one relaxation time, i.e., the Lord and Shulman’s the-
ory (LS model) can be written from equations (1)-(8) by setting mechan-
ical PLs parameters tΘ = 0 and tq = τ0 (τ0 is the thermal relaxation
time). Upon neglecting the thermal PLs, i.e., tΘ = tq = 0, we obtain the
governing field equations for coupled theory of thermoelasticity (CTE
model). Also, it is clear that by setting the thermal PLs tΘ = tq = 0,
and the thermomechanical coupling parameters β11 = β22 = 0, one gets
the governing field equations for uncoupled thermoelasticity.

3. Variable thermal conductivity

Thermal properties of thermosensitivity solid should be vary with
temperature and leads to a nonlinear heat conduction problem. One
of the ways that enable us to solve such problem is by assuming sim-
ply nonlinear properties of the material. This means that the thermal
material coefficient Kr and the specific heat CE should be taken to be
linearly depending on the temperature [30], but the thermal diffusivity
k (= Kr

ρCE
) may be assumed constant. That is

Kr = Kr(Θ) = k0 + k∗1Θ.(9)

Now, let us consider a new function ψ to express the heat conduction in
Kirchhoff transformation in the form [30]

ψ =
1

k0

∫

Θ

0

Kr(Θ)dΘ.(10)

The above equations with the aid of equation (9) gives

ψ = Θ

(

1 +
1

2
k1Θ

)

.(11)

From equation (11), it follows that

∇ψ =
Kr(Θ)

k0
∇Θ,

∂ψ

∂t
=
Kr(Θ)

k0

∂Θ

∂t
.(12)

Finally, the general heat equation with variable thermal conductivity is
given, after substituting equation (12) into equation (8), in the form

(
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From equations (11), the equation of motion will be
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or in an expanding form
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For linearity, since Θ = T − T0 such that |Θ/T0| ≪ 1, then the above
equation will be reduced to
(16)
(
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which is the same as equation (5) just Θ is replaced with ψ. Conse-
quently, the thermal stresses may be obtained by using equation (3)
with replacing Θ by ψ. In what follows we will consider the following
non-dimensional variables

{r
′
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′
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′
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(17)

Using the above dimensionless quantities in the governing equations and
suppressing dashes, we obtain
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However, the dimensionless stresses are given by
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where

{β1, β2, β3, β6} =
T0
c11

{β11, β22, β33, (β11 − β22)},

{β4, β5} =
1

ρCE
{β11, β22}, {c1, c2, c3, c4} =

1

c11
{c12, c22, c13, c23}.

(21)

4. Solution of the problem

To solve the present problem we will firstly considered the initial and
regularity conditions. These conditions may be expressed as

u(r, 0) =
∂u(r, t)

∂t

∣

∣

∣

t=0

= 0, Θ(r, 0) =
∂Θ(r, t)

∂t

∣

∣

∣

t=0

= 0,

ψ(r, 0) =
∂ψ(r, t)

∂t

∣

∣

∣

t=0

= 0,

(22)

u(r, t) = Θ(r, t) = ψ(r, t) = 0 when r → ∞.(23)

In addition, it is assumed that the disturbances are small and confined
to neighborhood of the interface r = R and hence vanish as r tends to
infinity. Equations (18) and (19) can be solved by considering that the
medium described above is quiescent and the surface of the cylinder is
subjected to a time dependent thermal shock and traction free. So, the
corresponding boundary conditions may be written as

Θ(R, t) = Θ0H(t), t > 0,(24)

σr(R, t) = 0,(25)

where Θ0 is constant. Using equation (11), then one gets

ψ(R, t) = Θ0H(t) +
1

2
k1[Θ0H(t)]2.(26)

The Laplace transform is applied to equations (18)-(20) taking into con-
sideration the initial conditions given in equation (22) and assuming
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that β11 = β22 (i.e., β4 = β5 = β) and c11 = c22 to obtain the following
equations:

(27)
d2ū

dr2
+
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r

dū

dr
−
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1 + t0s
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where ū, ψ̄, σ̄r, σ̄θ and σ̄z are the Laplace transforms of quantities u, ψ,
σr, σθ and σz, respectively, and s is the Laplace parameter. Equations
(28) and (29) may be simplified as

(30) (DD1 − τ1)ū = τ2Dψ̄,

(31) βτ3D1ū = (DD1 − τ3)ψ̄,

where

(32) D =
d

dr
,D1 =

d

dr
+
1

r
, τ1 =

s2

1 + t0s
, τ2 =

β1
1 + t0s

, τ3 =
s(1 + tqs)

1 + tΘs
.

Now, let the radial displacement u is appeared as a first derivative of a
new thermoelastic potential function φ in the form

(33) u =
dφ

dr
,

then, the Laplace form of the above relation may be introduced into
equations (30) and (31) to obtain

(34) (DD1 − τ1)φ̄ = τ2ψ̄,

(35) βτ3D1Dφ̄ = (DD1 − τ3)ψ̄.

Eliminating ψ̄ from the above equations, one gets

(36) {∇4 − [τ1 + τ3(1 + βτ2)]∇
2 + τ1τ3}φ̄ = 0,

which tends to the following characteristic equation:

(37) (∇2 −m2
1)(∇

2 −m2
2)φ̄ = 0,

where m2
1
and m2

2
are the roots of the equation

(38) m4 − [τ1 + τ3(1 + βτ2)]m
2 + τ1τ3 = 0.
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The roots of equation (37) are obtained as

(39) m2
1 =

1

2
(2A+

√

A2 − 4B), m2
2 =

1

2
(2A−

√

A2 − 4B),

where

(40) A = τ1 + τ3(1 + βτ2), B = τ1τ3.

Equation (37) leads to the modified Bessel’s equation for φ̄ of zero order

(41)

(

d2

dr2
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1

r

d

dr
−m2

1

)(

d2

dr2
+

1

r

d

dr
−m2

2

)

φ̄ = 0.

The solutions of the above equation under the regularity conditions that
u, Θ, ψ → 0 as r → ∞ can be written in the form

(42) φ̄ =

2
∑

i=1

AiK0(mir),

where Ai, i = 1, 2 are two parameters may be given in terms of s. The
substitution of equation (42) into equation (34) gives

(43) ψ̄ =
1

τ2

2
∑

i=1

(m2
i − s2)AiK0(mir).

Also, the radial displacement according to equations (33) and (42) will
be

(44) ū = −

2
∑

i=1

AiK1(mir).

The following well-known expression of Bessel’s function

(45) xK ′

n(x) = −xKn±1 ± nKn(x),

is used to derive the stresses in terms of the displacement ū and the
function ψ̄. So, one obtains

(46) σ̄r = −

2
∑

i=1

[

s2K0(mir) +
mi(1− c1)

r
K1(mir)

]

Ai,

(47)

σ̄θ = −

2
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i=1

{

[s2 −m2
i (1− c1)]K0(mir)−
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r
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σ̄z =−
2

∑

i=1

{

[

m2
i c3
2

−
β3

β1
(m2

i − s2)

]

K0(mir)(48)

−
mic4
r

K1(mir) +
m2

i c3
2

K2(mir)

}

Ai.

The boundary conditions appeared in equations (26) and (25), after
using Laplace transform, take the form

(49) ψ̄(R, s) = Θ0

(

1

2
+
k1
2s

)

= Ḡ(s),

(50) σ̄r(R, s) = 0.

The substitution of equations (43) and (46) into the above conditions
gives two equations in the unknown parameters Ai as

(51)

2
∑

i=1

(m2
i − s2)AiK0(miR) = τ2Ḡ(s),

(52)

2
∑

i=1

[

s2K0(miR) +
mi(1− c1)

R
K1(miR)

]

Ai = 0.

After getting Ai, the solution of the problem may be completed in the
Laplace transform domain. Furthermore, the temperature Θ̄ can be
obtained by solving equation (11) after application of the Laplace trans-
form as

(53) Θ̄(r, s) =
−1 +

√

1 + 2k1ψ̄

k1
.

5. Discussions of numerical results

The distributions of the field quantities should be obtained inside the
medium in their inverted forms. To invert the Laplace transform in equa-
tions (44), (46)-(48) and (53), a numerical inversion method based on a
Fourier series expansion [24], [25] should be adopted. Any expression in
Laplace domain can be inverted in this method to the time domain as

f(t) =
ect

t

{

1

2
f̄(c) + Re

[

N
∑

n=1

(−1)nf̄

(

c+
inπ

t

)

]}

,(54)
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where the value of c should be satisfy the relation ct ≈ 4.7 as mentioned
in numerous numerical experiments [31]. For numerical purpose, one
can use the properties of Cobalt material in SI units [32].

The reference temperature T0 = 298 K is used during the numeri-
cal results of all quantities. The dimensionless temperature Θ, radial
displacement u, thermal stresses σr, σθ and σz are plotted for thermo-
viscoelastic (TVE) solid (t0 6= 0) and thermoelastic (TE) solid (t0 = 0)
at different values of r ≥ 1. The results have been illustrated in Figures
1-5 for three cases. The first one is devoted to investigated the effect of
the DPLs tq and tΘ on the field quantities when the variability thermal
conductivity parameter k1 and the mechanical relaxation time due to the
viscosity t0 remain constants (k1 = −0.5 and t0 = 0.1). The second case
is devoted to discuss the effects of the variability thermal conductivity
parameter k1 on the field quantities of TVE solid (t0 = 0.1) when tq and
tΘ remain constants (tq = 0.2 and tΘ = 0.1). In this case, three different
values of k1 are considered. The values k1 = −1 and −0.5 are taken for
variable thermal conductivity and k1 = 0 for temperature-independent
thermal conductivity. Finally, the effects of mechanical relaxation time
due to the viscosity parameter t0 on the field quantities is presented in
the third case (tq = 0.2, tΘ = 0.1 and k1 = −0.5). The comparisons of
the dimensionless physical quantities are made for the TVE solid when
t0 = 0.2 and 0.1 and the TE solid when t0 = 0. Figure 1 shows three
plots of the distribution of temperature Θ along the radial direction
for different: (a) theories of thermoelasticity, (b) thermal conductivity
parameter k1, and (c) viscosity parameter t0. Similar plots for the dis-
tributions of radial displacement u and thermal stresses σr, σθ and σz
are shown in Figures 2-5, respectively. Figure 1 shows that the temper-
ature Θ decreases along the radial direction. Figure 1(a) shows that the
variation of Θ in the context of DPL and CTE models follows similar
trends while the LS model may be different. Figure 1(b, c) shows that
Θ is increasing as k1 and t0 increase. It can be observed from Figure
1(c) that the viscosity parameter t0 acts to increase the magnitude of
the temperature distribution. The temperature distribution in the TVE
solid may be larger than the corresponding one in the TE solid. Fig-
ure 2 shows that the distribution of radial displacement u starts with
negative values in all cases, and it is monotonically increasing to get
its maximum values at different positions. Figure 2(a) shows that umax

occurs at different positions according to the used model. The variation
of u has the same behavior in the context of DPL and CTE model of
thermoviscoelasticity while the behavior of u due to the LS model may
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be different. Figure 2(b) shows that umax occurs at the same position
(r ≈ 1.12) and then u gradually diminishes to zero. In fact, the radial
displacement u vanishes twice, the first at r ≈ 1.09 and the second at
r = 2. As k1 decreases u increases in the interval 1 ≤ r ≤ 1.09 and
decreases in the interval 1.09 ≤ r ≤ 2. From Figure 2(c) it is observed
that, when the value of the viscosity parameter t0 increases, the abso-
lute values of the radial displacement u decreases, and the peek takes
place when r = 1.18. In Figure 3, the distribution of thermal radial
stress σr starts with a zero value at r = 1 for all cases which agrees with
the boundary condition. Figure 3(a) shows that the variation of σr in
the context of DPL and CTE models of thermoelasticity follows similar
trends while the LS model may be different. Figure 3(b) shows that σr
is continuously increasing to attain its highest values at r ≈ 1.07 then it
decreases to attain its lowest values at r ≈ 1.22. It is to be noted that
the increase of k1 acts to increase the magnitude of the wave of thermal
stress σr. In Figure 3(c), when the value of the viscosity parameter t0
increases, the absolute value of the thermal radial stress σr increases
along the radial direction. Figure 4 shows that the thermal hoop stress
σθ starts with negative values and continuously vibrates along the radial
direction. Figure 4(a) shows that the variation of σθ in the context of
DPL and CTE models follows similar trends while the LS model may
be different. Figure 4(b) shows that σθ increases as the parameter k1
decreases. The difference in the values of σθ at a particular point for
three different values of viscosity parameter t0 can easily be observed
in Figure 4(c). It is obvious that the thermal hoop stress σθ is always
compressive along the radial direction. Figure 5 shows that the distri-
bution of thermal axial stress σz starts with value above zero at r = 1
for all cases. As usual, Figure 5(a) shows that the variation of σz in
the context of DPL and CTE models follows similar trends while the
LS model may be different. Figure 5(b) shows that σz is continuously
increasing to attain its highest values at r ≈ 1.07 then it decreases to
attain its lowest values at r ≈ 1.22. It is clear that σz vanishes twice,
the first at r ≈ 1.1 and the second at r = 2. As k1 increases the thermal
axial stress σz increases in the interval 1 ≤ r ≤ 1.1 and decreases in the
interval 1.1 ≤ r ≤ 2. In Figure 3(c), when the value of the viscosity pa-
rameter t0 increases, the thermal axial stress σz decreases in the interval
1.19 ≤ r ≤ 2. However, in the interval 1 ≤ r ≤ 1.9 it is observed that σz
for TVE solid (t0 = 0.2 and t0 = 0.1) is larger than the corresponding
one for TE solid (t0 = 0).
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6. Conclusions

In this work, the equations of generalized thermoviscoelasticity are
obtained for a homogeneous orthotropic infinite unbounded solid con-
taining a cylindrical cavity with a variable thermal conductivity based on
the DPL model. The Lord and Shulman’s model and the coupled ther-
moelasticity model are also employed to study the thermomechanical
coupling, thermal and mechanical relaxation effects. The outer surface
of the cylindrical cavity is taken to be traction-free and subjected to a
time-dependent thermal shock. Numerical results for the field quanti-
ties are illustrated in many plots. Comparisons between thermoelasticity
models are made and the effects of different parameters are discussed. It
is seen that the viscous effect plays an important role and its variation
is more pronounced in the thermoviscoelastic solid. The speed of the
wave propagation of all field quantities is very sensitive to the variation
of variability thermal conductivity parameter. The results presented in
this article should prove useful for investigators in the development of
mechanics of solids.
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Figure 1. The distribution of temperature Θ along the
radial direction for different: (a) theories of thermoelas-
ticity, (b) thermal conductivity parameter k1, and (c)
viscosity parameter t0.
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Figure 2. The distribution of displacement u along the
radial direction for different: (a) theories of thermoelas-
ticity, (b) thermal conductivity parameter k1, and (c)
viscosity parameter t0.
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Figure 3. The distribution of radial stress σr along the
radial direction for different: (a) theories of thermoelas-
ticity, (b) thermal conductivity parameter k1, and (c)
viscosity parameter t0.
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Figure 4. The distribution of hoop stress σθ along the
radial direction for different: (a) theories of thermoelas-
ticity, (b) thermal conductivity parameter k1, and (c)
viscosity parameter t0.
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Figure 5. The distribution of axial stress σz along the
radial direction for different: (a) theories of thermoelas-
ticity, (b) thermal conductivity parameter k1, and (c)
viscosity parameter t0.


