• Title/Summary/Keyword: lane change recognition

Search Result 13, Processing Time 0.024 seconds

A Lane Change Recognition System for Smart Cars (스마트카를 위한 차선변경 인식시스템)

  • Lee, Yong-Jin;Yang, Jeong-Ha;Kwak, Nojun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we propose a vision-based method to recognize lane changes of an autonomous vehicle. The proposed method is based on six states of driving situations defined by the positional relationship between a vehicle and its nearest lane detected. With the combinations of these states, the lane change is detected. The proposed method yields 98% recognition accuracy of lane change even in poor situations with partially invisible lanes.

Multiple Vehicle Recognition based on Radar and Vision Sensor Fusion for Lane Change Assistance (차선 변경 지원을 위한 레이더 및 비전센서 융합기반 다중 차량 인식)

  • Kim, Heong-Tae;Song, Bongsob;Lee, Hoon;Jang, Hyungsun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.121-129
    • /
    • 2015
  • This paper presents a multiple vehicle recognition algorithm based on radar and vision sensor fusion for lane change assistance. To determine whether the lane change is possible, it is necessary to recognize not only a primary vehicle which is located in-lane, but also other adjacent vehicles in the left and/or right lanes. With the given sensor configuration, two challenging problems are considered. One is that the guardrail detected by the front radar might be recognized as a left or right vehicle due to its genetic characteristics. This problem can be solved by a guardrail recognition algorithm based on motion and shape attributes. The other problem is that the recognition of rear vehicles in the left or right lanes might be wrong, especially on curved roads due to the low accuracy of the lateral position measured by rear radars, as well as due to a lack of knowledge of road curvature in the backward direction. In order to solve this problem, it is proposed that the road curvature measured by the front vision sensor is used to derive the road curvature toward the rear direction. Finally, the proposed algorithm for multiple vehicle recognition is validated via field test data on real roads.

A Study on In-vehicle Aggressive Driving Detection Recorder System for Monitoring on Drivers' Behavior (운전행태 감시를 위한 차량 위험운전 검지장치 연구)

  • Hong, Seung-Jun;Lim, Lyang-Keun;Oh, Ju-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the potential of in-vehicle data recorder system for monitoring aggressive driving patterns and providing feedback to drivers on their on road behaviour. This system can detect 10 risky types of drivers' driving patterns such as aggressive lane change, sudden brakes and turns with acceleration etc. Vehicle dynamics simulation and vehicle road test have been performed in order to develop driving pattern recognition algorithms. Recorder systems are installed to 50 buses in a single company. Drivers' driving behaviour are monitored for 1 month. The drivers' risky driving data collected by the system are analyzed. Aggressive lane change in 50km/h below is a cause in overwhelming majority of risky driving pattern.

Driving three kinds of Course Test with RC car by Color Recognition (색깔 인식에 의한 RC car의 3가지 코스 시험 주행)

  • Lee, Jong-Min;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • Automatic driving needs many functions such as the obstacle recognition, the lane recognition, and the lane change, etc. In this paper, we realized a system which automatically drove the three-kinds of vehicle driving course, to introduce and apply the concept of 'color recognition' that expands the scope of 'lane recognition' for vehicle driving. We made the reduced each course compared with RC(Radio Control) car size, and controlled the steering considering the position and the slope of the detection line and the speed. Because the RC car does not have the brake function, we consider the speed and the position of the detection line to stop the RC car.

Virtual Contamination Lane Image and Video Generation Method for the Performance Evaluation of the Lane Departure Warning System (차선 이탈 경고 시스템의 성능 검증을 위한 가상의 오염 차선 이미지 및 비디오 생성 방법)

  • Kwak, Jae-Ho;Kim, Whoi-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.627-634
    • /
    • 2016
  • In this paper, an augmented video generation method to evaluate the performance of lane departure warning system is proposed. In our system, the input is a video which have road scene with general clean lane, and the content of output video is the same but the lane is synthesized with contamination image. In order to synthesize the contamination lane image, two approaches were used. One is example-based image synthesis, and the other is background-based image synthesis. Example-based image synthesis is generated in the assumption of the situation that contamination is applied to the lane, and background-based image synthesis is for the situation that the lane is erased due to aging. In this paper, a new contamination pattern generation method using Gaussian function is also proposed in order to produce contamination with various shape and size. The contamination lane video can be generated by shifting synthesized image as lane movement amount obtained empirically. Our experiment showed that the similarity between the generated contamination lane image and real lane image is over 90 %. Futhermore, we can verify the reliability of the video generated from the proposed method through the analysis of the change of lane recognition rate. In other words, the recognition rate based on the video generated from the proposed method is very similar to that of the real contamination lane video.

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역 원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Jeong, Seung-Gweon;Kim, In-Soo;Kim, Sung-Han;Lee, Dong-Hwoal;Yun, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2001
  • A lane detection based on a road model or feature all needs correct acquirement of information on the lane in an image. It is inefficient to implement a lane detection algorithm through the full range of an image when it is applied to a real road in real time because of the calculating time. This paper defines two (other proper terms including"modes") for detecting lanes on a road. First is searching mode that is searching the lane without any prior information of a road. Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It allows to extract accurately and efficiently the edge candidate points of a lane without any unnecessary searching. By means of inverse perspective transform which removes the perspective effect on the edge candidate points, we transform the edge candidate information in the Image Coordinate System(ICS) into the plan-view image in the World Coordinate System(WCS). We define a linear approximation filter and remove faulty edge candidate points by using it. This paper aims at approximating more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.e fitting.

  • PDF

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF

A Study on Lane Detection Based on Split-Attention Backbone Network (Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구)

  • Song, In seo;Lee, Seon woo;Kwon, Jang woo;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.178-188
    • /
    • 2020
  • This paper proposes a lane recognition CNN network using split-attention network as a backbone to extract feature. Split-attention is a method of assigning weight to each channel of a feature map in the CNN feature extraction process; it can reliably extract the features of an image during the rapidly changing driving environment of a vehicle. The proposed deep neural networks in this paper were trained and evaluated using the Tusimple data set. The change in performance according to the number of layers of the backbone network was compared and analyzed. A result comparable to the latest research was obtained with an accuracy of up to 96.26, and FN showed the best result. Therefore, even in the driving environment of an actual vehicle, stable lane recognition is possible without misrecognition using the model proposed in this study.

Driver's Behavioral Pattern in Driver Assistance System (운전자 사용자경험기반의 인지향상 시스템 연구)

  • Jo, Doori;Shin, Donghee
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.579-586
    • /
    • 2014
  • This paper analyzes the recognition of driver's behavior in lane change using context-free grammar. In contrast to conventional pattern recognition techniques, context-free grammars are capable of describing features effectively that are not easily represented by finite symbols. Instead of coordinate data processing that should handle features in multiple concurrent events respectively, effective syntactic analysis was applied for patterning of symbolic sequence. The findings proposed the effective and intuitive method for drivers and researchers in driving safety field. Probabilistic parsing for the improving this research will be the future work to achieve a robust recognition.

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting (LED 조명을 이용한 자율주행차용 터널 차로측위 시스템)

  • Jeong, Jae hoon;Lee, Dong heon;Byun, Gi-sig;Cho, Hyung rae;Cho, Yoon ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.186-195
    • /
    • 2017
  • Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.