DOI QR코드

DOI QR Code

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting

LED 조명을 이용한 자율주행차용 터널 차로측위 시스템

  • Jeong, Jae hoon (Dept. of Control & Instrumentation Eng., Univ. of Pukyong National) ;
  • Lee, Dong heon (Dept. of Control & Instrumentation Eng., Univ. of Pukyong National) ;
  • Byun, Gi-sig (Dept. of Control & Instrumentation Eng., Univ. of Pukyong National) ;
  • Cho, Hyung rae (Dept. of Radio Communication Eng., Univ. of Korea Maritime and Ocean) ;
  • Cho, Yoon ho (Company. of Hyundai SDI)
  • 정재훈 (부경대학교 제어계측공학과) ;
  • 이동헌 (부경대학교 제어계측공학과) ;
  • 변기식 (부경대학교 제어계측공학과) ;
  • 조형래 (한국해양대학교 전파공학과) ;
  • 조윤호 ((주)현대SDI)
  • Received : 2016.12.01
  • Accepted : 2017.02.04
  • Published : 2017.02.28

Abstract

Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.

최근 자율주행 자동차에 대한 연구가 활발하다. 이러한 자율주행을 실현하기 위해서는 ITS, Connected Car, V2X, ADAS 등의 여러 가지 기술이 있다. 그 중에서도 차선의 변경과 목적지까지 운행하기 위해서는 도로상에서 차량이 어디에 있는가를 인식하는 것이 특히 중요하다. 일반적으로 GPS 및 카메라 영상처리를 통하여 이루어지고 있다. 그러나 GPS의 경우 터널과 같은 음영 지역으로 인한 위치 확인의 신뢰성에 한계가 있으며, 카메라 영상처리를 실행할 경우 도로 차선의 상태 및 도로 주변 환경에 따라 인식 및 측위에 한계가 있다. 본 논문에서는 GPS 음영지역인 터널에서 자율주행 자동차를 위한 LED 조명이 설치되어야 함을 제안한다. 본 논문의 실험에서는 차로별 다른 색온도의 빛을 조사하는 터널 LED 조명 모의 환경을 구성한 후, 색온도를 분석하여 자율주행차의 현재 차로의 위치를 측정할 수 있음을 보였다. 이를 바탕으로 본 연구에서는 터널 LED 조명을 이용한 차로 위치측위 기술을 제안한다.

Keywords

References

  1. Chung B. M., Seok J. W., Cho C. S. and Lee J. W.(2008), "Autonomous tracking control of intelligent vehicle using GPS information," Journal of the Korean Society for Precision Engineering, vol. 25, no. 10, pp.58-66.
  2. Jeong J. H., Lee D. H., Byun G. S. and Cho H. R.(2011), "A Study of Self-Driving Car Position Recognition based on the LED Lighting Infrastructure," THE 2016 KOREAN INSTITUTE OF ITS CONFERENCE, pp.95-97.
  3. Kong S. H. and Jeong G. S.(2015), "GPS/GNSS based vehicular positioning and navigation techniques," The Korean Society of Automotive Engineers., vol. 37, no. 6, pp.24-28.
  4. Kong S. H., Jeon S. Y. and Ko H. W.(2015), "Status and trends in the sensor fusion positioning technology," The Journal of The Korean Institute of Communication Sciences, vol. 32, no. 8, pp.45-53.
  5. Lee J. K.(2015), "Automatic driving cars developments trends and implications," The Korean Institute of Electrical Engineers, vol. 64 no. 4, pp.24-28.
  6. Noboru O.(2011), Introduction to Color Reproduction Technology, JINSEM MEDIA(Seoul, Korea), pp.9-25.
  7. Yun D. S. and Yu H. S.(2008), "Development of the optimized autonomous navigation algorithm for the unmanned vehicle using extended Kalman filter," The Korean Society of Automotive Engineers, vol. 16, no. 3, pp.7-14.

Cited by

  1. Tunnel lane-positioning system for autonomous driving cars using LED chromaticity and fuzzy logic system vol.41, pp.4, 2017, https://doi.org/10.4218/etrij.2018-0192
  2. Numerical Analysis of 2-D Positioned, Indoor, Fuzzy-Logic, Autonomous Navigation System Based on Chromaticity and Frequency-Component Analysis of LED Light vol.21, pp.13, 2017, https://doi.org/10.3390/s21134345