DOI QR코드

DOI QR Code

A Study on Lane Detection Based on Split-Attention Backbone Network

Split-Attention 백본 네트워크를 활용한 차선 인식에 관한 연구

  • 송인서 (인하대학교 전기컴퓨터공학과) ;
  • 이선우 (인하대학교 전기컴퓨터공학과) ;
  • 권장우 (인하대학교 컴퓨터공학과) ;
  • 원종훈 (인하대학교 전기공학과)
  • Received : 2020.10.05
  • Accepted : 2020.10.21
  • Published : 2020.10.31

Abstract

This paper proposes a lane recognition CNN network using split-attention network as a backbone to extract feature. Split-attention is a method of assigning weight to each channel of a feature map in the CNN feature extraction process; it can reliably extract the features of an image during the rapidly changing driving environment of a vehicle. The proposed deep neural networks in this paper were trained and evaluated using the Tusimple data set. The change in performance according to the number of layers of the backbone network was compared and analyzed. A result comparable to the latest research was obtained with an accuracy of up to 96.26, and FN showed the best result. Therefore, even in the driving environment of an actual vehicle, stable lane recognition is possible without misrecognition using the model proposed in this study.

본 논문에서는 split-attention 네트워크를 백본으로 특징을 추출하는 차선인식 CNN 네트워크를 제안한다. split-attention은 CNN의 특징 추출 과정에서 feature map의 각 channel에 가중치를 부여하는 방법으로, 빠르게 변화하는 자동차의 주행 환경에서 안정적으로 이미지의 특징을 추출할 수 있다. Tusimple 데이터 셋을 활용하여 본 논문에서 제안하는 네트워크를 학습·평가하였으며, 백본 네트워크의 레이어 수에 따른 성능 변화를 비교·분석 하였다. 평가 결과 최대 96.26%의 정확도로 최신 연구에 준하는 결과를 얻었으며, FP의 경우 0.0234(2.34%)로 비교 연구 중 가장 좋은 결과를 보여준다. 따라서, 실제 차량의 주행 환경 등에서도 본 연구에서 제안하는 모델을 사용하여 오인식 없이 안정적인 차선 인식이 가능하다.

Keywords

References

  1. Cai Z. and Vasconcelos N.(2018), "Cascade r-cnn: Delving into high quality object detection," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.6154-6162.
  2. Chen K., Pang J., Wang J., Xiong Y., Li X., Sun S. and Loy C. C.(2019), "Hybrid task cascade for instance segmentation," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4974-4983.
  3. Chen P., Lo S., Hang H., Chan S. and Lin J.(2018), "Efficient Road Lane Marking Detection with Deep Learning," 2018 IEEE 23rd International Conference on Digital Signal Processing(DSP), China, pp.1-5, doi:10.1109/ICDSP.2018.8631673.
  4. Chen Z., Liu Q. and Lian C.(2019), "PointLaneNet: Efficient end-to-end CNNs for Accurate Real-Time Lane Detection," In 2019 IEEE Intelligent Vehicles Symposium(IV), pp.2563-2568.
  5. He K., Gkioxari G., Dollar P. and Girshick R.(2017), "Mask r-cnn," In Proceedings of the IEEE International Conference on Computer Vision, pp.2961-2969.
  6. He K., Zhang X., Ren S. and Sun J.(2016), "Deep residual learning for image recognition," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778.
  7. He T., Zhang Z., Zhang H., Zhang Z., Xie J. and Li M.(2019), "Bag of tricks for image classification with convolutional neural networks," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.558-567.
  8. Hochreiter S.(1998), "The vanishing gradient problem during learning recurrent neural nets and problem solutions," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 2, pp.107-116. https://doi.org/10.1142/S0218488598000094
  9. Hou Y., Ma Z., Liu C. and Loy C. C.(2019), "Learning lightweight lane detection cnns by self attention distillation," In Proceedings of the IEEE International Conference on Computer Vision, pp.1013-1021.
  10. Hu J., Shen L. and Sun G.(2018), "Squeeze-and-excitation networks," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.7132-7141.
  11. Kingma D. P. and Ba J.(2014), Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.
  12. Ko Y., Jun J., Ko D. and Jeon M.(2020), Key Points Estimation and Point Instance Segmentation Approach for Lane Detection, arXiv preprint arXiv:2002.06604.
  13. Krizhevsky A., Sutskever I. and Hinton G. E.(2012), "Imagenet classification with deep convolutional neural networks," In Advances in Neural Information Processing Systems, pp.1097-1105.
  14. Li X., Wang W., Hu X. and Yang J.(2019), "Selective kernel networks," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.510-519.
  15. Neven D., Brabandere B. D., Georgoulis S., Proesmans M. and Gool L. V.(2018), "Towards End-to-End Lane Detection: An Instance Segmentation Approach," 2018 IEEE Intelligent Vehicles Symposium(IV), Changshu, pp.286-291, doi:10.1109/IVS.2018.8500547.
  16. Parashar A., Rhu M., Mukkara A., Puglielli A., Venkatesan R., Khailany B. and Dally W. J.(2017), "Scnn: An accelerator for compressed-sparse convolutional neural networks," ACM SIGARCH Computer Architecture News, vol. 45, no. 2, pp.27-40. https://doi.org/10.1145/3140659.3080254
  17. Ren S., He K., Girshick R. and Sun J.(2015), "Faster r-cnn: Towards real-time object detection with region proposal networks," In Advances in Neural Information Processing Systems, pp.91-99.
  18. Ruder S.(2016), An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747.
  19. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D. and Rabinovich A.(2015), "Going deeper with convolutions," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-9.
  20. Tusimple(2017.7.18), https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
  21. Wang Z., Ren W. and Qiu Q.(2018), Lanenet: Real-time lane detection networks for autonomous driving, arXiv preprint arXiv:1807.01726.
  22. Yoo H., Yang U. and Sohn K.(2013), "Gradient-Enhancing Conversion for Illumination-Robust Lane Detection," In IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp.1083-1094, doi:10.1109/TITS.2013.2252427.
  23. Zhang H., Wu C., Zhang Z., Zhu Y., Zhang Z., Lin H. and Li M.(2020), Resnest: Split-attention networks, arXiv preprint arXiv:2004.08955.