• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.025 seconds

The Evaluation of on Land Cover Classification using Hyperspectral Imagery (초분광 영상을 이용한 토지피복 분류 평가)

  • Lee, Geun-Sang;Lee, Kang-Cheol;Go, Sin-Young;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • The objective of this study is to suggest the possibility on land cover classification using hyperspectal imagery on area which includes lands and waters. After atmospheric correction as a preprocessing work was conducted on hyperspectral imagery acquired by airborne hyperspectral sensor CASI-1500, the effect of atmospheric correction to a few land cover class in before and after atmospheric correction was compared and analyzed. As the result of accuracy of land cover classification by highspectral imagery using reference data as airphoto and digital topographic map, maximum likelihood method represented overall accuracy as 67.0% and minimum distance method showed overall accuracy as 52.4%. Also product accuracy of land cover classification on road, dry field and green house, but that on river, forest, grassland showed low because the area of those was composed of complex object. Therefore, the study needs to select optimal band to classify specific object and to construct spectral library considering spectral characteristics of specific object.

A Study on the Land Cover Classification and Cross Validation of AI-based Aerial Photograph

  • Lee, Seong-Hyeok;Myeong, Soojeong;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

A study of Land-Cover Classification technique Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 토지피복분류기법 연구)

  • 신석효;안기원;이주원;김상철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.267-273
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study is used to the high-resolution (6.6m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data(36 bands).We accomplished FCM classification technique with MLC technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method.

  • PDF

Application of Random Forests to Assessment of Importance of Variables in Multi-sensor Data Fusion for Land-cover Classification

  • Park No-Wook;Chi kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.211-219
    • /
    • 2006
  • A random forests classifier is applied to multi-sensor data fusion for supervised land-cover classification in order to account for the importance of variable. The random forests approach is a non-parametric ensemble classifier based on CART-like trees. The distinguished feature is that the importance of variable can be estimated by randomly permuting the variable of interest in all the out-of-bag samples for each classifier. Two different multi-sensor data sets for supervised classification were used to illustrate the applicability of random forests: one with optical and polarimetric SAR data and the other with multi-temporal Radarsat-l and ENVISAT ASAR data sets. From the experimental results, the random forests approach could extract important variables or bands for land-cover discrimination and showed reasonably good performance in terms of classification accuracy.

Land Cover Classification of the Korean Peninsula Using Linear Spectral Mixture Analysis of MODIS Multi-temporal Data (MODIS 다중시기 영상의 선형분광혼합화소분석을 이용한 한반도 토지피복분류도 구축)

  • Jeong, Seung-Gyu;Park, Chong-Hwa;Kim, Sang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.553-563
    • /
    • 2006
  • This study aims to produce land-cover maps of Korean peninsula using multi-temporal MODIS (Moderate Resolution Imaging Spectroradiometer) imagery. To solve the low spatial resolution of MODIS data and enhance classification accuracy, Linear Spectral Mixture Analysis (LSMA) was employed. LSMA allowed to determine the fraction of each surface type in a pixel and develop vegetation, soil and water fraction images. To eliminate clouds, MVC (Maximum Value Composite) was utilized for vegetation fraction and MinVC (Minimum Value Composite) for soil fraction image respectively. With these images, using ISODATA unsupervised classifier, southern part of Korean peninsula was classified to low and mid level land-cover classes. The results showed that vegetation and soil fraction images reflected phenological characteristics of Korean peninsula. Paddy fields and forest could be easily detected in spring and summer data of the entire peninsula and arable land in North Korea. Secondly, in low level land-cover classification, overall accuracy was 79.94% and Kappa value was 0.70. Classification accuracy of forest (88.12%) and paddy field (85.45%) was higher than that of barren land (60.71%) and grassland (57.14%). In midlevel classification, forest class was sub-divided into deciduous and conifers and field class was sub-divided into paddy and field classes. In mid level, overall accuracy was 82.02% and Kappa value was 0.6986. Classification accuracy of deciduous (86.96%) and paddy (85.38%) were higher than that of conifers (62.50%) and field (77.08%).

Temporal Analysis on the Transition of Land Cover Change and Growth of Mining Area Using Landsat TM/+ETM Satellite Imagery in Tuv, Mongolia (Landsat TM/+ETM 위성영상을 이용한 몽골 Tuv지역의 토지피복변화 및 광산지역확대 추이분석)

  • Erdenesumbee, Suld;Cho, Misu;Cho, Gisung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.451-457
    • /
    • 2014
  • Recently, the land degradation and pasture erosion in Tuv, located around Ulaanbaatar of Mongolia, have been increasing sharply due to escalating developments of mining sectors, well as the density of populations. Because of that, we have chosen the urban and mining area of Tuv for our study target. During the study, the temporal changes of land cover in Tuv, Mongolia were observed by the Landsat TM/+ETM satellite images from 2001 to 2009 that provided the fundamental dataset to apply NDVI and K-Mean algorithm of Unsupervised Classification and Maximum likelihood classification(MLC) of Supervised Classification in order to conclude in land cover change analyzation. The result of our study implies that the growth of mining area, the climate change, and the density of population led the land degradation to desertification.

A Study on the EO-1 Hyperion's Optimized Band Selection Method for Land Cover/Land Use Map (토지피복지도 제작을 위한 초분광 영상 EO-1 Hyperion의 최적밴드 선택기법 연구)

  • Jang Se-Jin;Lee Ho-Nam;Kim Jin-Kwang;Chae Ok-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2006
  • The Land Cover/Land Use Map have been constructed from 1998, which has hierarchical structure according to land cover/land use system. Level 1 classification Map have done using Landsat satellite image over whole Korean peninsula. Level II classification Map have been digitized using IRS-1C, 1D, KOMPSAT and SPOT5 satellite images resolution-merged with low resolution color images. Level II Land Cover/Land Use Map construction by digitizing method, however, is consuming enormous expense for satellite image acquisition, image process and Land Cover/Land Use Map construction. In this paper, the possibility of constructing Level II Land Cover/Land Use Map using hyperspectral satellite image of EO-1 Hyperion, which is studied a lot recently, is studied. The comparison of classifications using Hyperion satellite image offering more spectral information and Landsat-7 ETM+ image is performed to evaluate the availability of Hyperion satellite image. Also, the algorithm of the optimal band selection is presented for effective application of hyperspectral satellite image.

Accuracy analysis of Multi-series Phenological Landcover Classification Using U-Net-based Deep Learning Model - Focusing on the Seoul, Republic of Korea - (U-Net 기반 딥러닝 모델을 이용한 다중시기 계절학적 토지피복 분류 정확도 분석 - 서울지역을 중심으로 -)

  • Kim, Joon;Song, Yongho;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.409-418
    • /
    • 2021
  • The land cover map is a very important data that is used as a basis for decision-making for land policy and environmental policy. The land cover map is mapped using remote sensing data, and the classification results may vary depending on the acquisition time of the data used even for the same area. In this study, to overcome the classification accuracy limit of single-period data, multi-series satellite images were used to learn the difference in the spectral reflectance characteristics of the land surface according to seasons on a U-Net model, one of the deep learning algorithms, to improve classification accuracy. In addition, the degree of improvement in classification accuracy is compared by comparing the accuracy of single-period data. Seoul, which consists of various land covers including 30% of green space and the Han River within the area, was set as the research target and quarterly Sentinel-2 satellite images for 2020 were aquired. The U-Net model was trained using the sub-class land cover map mapped by the Korean Ministry of Environment. As a result of learning and classifying the model into single-period, double-series, triple-series, and quadruple-series through the learned U-Net model, it showed an accuracy of 81%, 82% and 79%, which exceeds the standard for securing land cover classification accuracy of 75%, except for a single-period. Through this, it was confirmed that classification accuracy can be improved through multi-series classification.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF