DOI QR코드

DOI QR Code

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images

항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류

  • LEE, Jin-Duk (Dept. of Civil Engineering, Kumoh National Institute of Technology) ;
  • BANG, Kon-Joon (Dept. of Civil Engineering, Kumoh National Institute of Technology) ;
  • KIM, Hyun-Ho (Hansung UI Inc.)
  • Received : 2018.02.02
  • Accepted : 2018.03.09
  • Published : 2018.03.31

Abstract

Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.

항공기 탑재용 초분광 카메라시스템에 의해 얻어진 영상데이터는 수십 내지 수백의 연속된 초분광 해상도로부터 동시에 각 화소별 완전한 분광 및 공간정보를 포함하고 있으므로 복잡한 연안지역에 대한 해안선 매핑, 특정재료로 이루어진 시설물 탐지, 연안지역의 토지이용 상세분석 및 변화 모니터링 등에 그 활용잠재성이 대단히 크다. 육역과 해역을 포함하는 연안지역을 대상으로 항공기 탑재 초분광센서인 CASI-1500으로부터 취득된 초분광 항공영상을 이용하여 분광각매퍼(SAM;Spectral Angle Mapper) 감독분류방법으로 토지피복분류를 행하였다. 첫번째, 대기보정영상에 대하여 육역과 해역이 포함된 지역에 대한 통합분류, 두번째, 육 해역의 통합분류결과로부터 육역과 해역의 분리 후 재분류, 그리고 세번째로 육역만을 대상으로 한 분류를 각각 수행하여 결과 및 정확도를 비교하였다. 또한 초분광 항공영상 48개 밴드로부터 IKONOS, QuickBird, KOMPSAT, GeoEye 등 고해상도 위성영상과 동일한 파장대의 4개 밴드영상, 그리고 WorldView-2 위성영상과 동일한 파장대의 8개 밴드영상만을 선택하여 각각 토지피복분류를 수행하고 초분광 48개 밴드영상으로 분류한 결과와 비교하였다. 연구결과, 연안지역에 대한 육역과 해역 통합영상으로 분류하는 것에 비해 육역과 해역 통합영상으로 분류한 후 육역과 해역을 분리하여 재분류를 수행하는 것이 효과적인 것으로 나타났다. 육역의 분류 결과에서 분광해상도가 높은 영상의 결과일수록 아스팔트나 콘크리트 도로가 더 정확하게 분류되었다.

Keywords

References

  1. Ahmed F. Elaksher, 2008. Fusion of hyperspectral images and Lidar-based DEMs for coastal mapping, Optics and Lasers in Engineering, Vol. 46, Issue 7, pp.493-498. https://doi.org/10.1016/j.optlaseng.2008.01.012
  2. Baltsavias E.P., 2002. Image spectroscopy and hyperspectral imaging, ISPRS Journal of Photogrammetry and Remote Sensing, 57(3):169-170. https://doi.org/10.1016/S0924-2716(02)00127-2
  3. Brook, A., E. Ben-Dor, and R. Richter, 2010. Fusion of hyperspectral images and Lidar data for civil engineering structure monitoring, Proceedings of Hyperspectral 2010 Workshop, Frascati, Italy. Available at: http://earth.esa.int/workshops/hyperspectral_2010/papers/p_brook2.pdf
  4. Byun, Y.K., Y.D. Uh and K.Y. Yu, 2013. Classification of hyperspectral images using spectral mutual information, Journal of the Korean Society for GeoSpatial Information System, 15(3):33-39 (변영기, 어영담, 유기윤, 분광 상호정보를 이용한 하이퍼스펙트럴 영상분류, 한국지형공간정보학회지, 15(3):33-39).
  5. Cho, H.K., D.S. Kim, K.Y. Yu, and Y.I. Kim, 2006. A study on the hyperspectral image classification with the iterative self-organizing unsupervised spectral angle classification, Korean Journal of Remote Sensing, 22(2):111-121 (조현기, 김대성, 유기윤, 김용일, 반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구, 대한원격탐사학회지, 22(2):111-121).
  6. Choi, J.W., Y.K. Byun, Y.I. Kim, and K.Y. Yu, 2006. Support vector machine classification of hyperspectral image using spectral similarity kernel, Journal of the Korean Society for GeoSpatial Information System, 14(4):71-77 (최재완, 변영기, 김용일, 유기윤, 분광 유사도 커널을 이용한 하이퍼스펙트럴 영상의 Support Vector Machine(SVM) 분류, 한국지형공간정보학회지, 14(4):71-77).
  7. Ga, C.O., D.S. Kim, Y.K. Byun, and Y.I. Kim, 2004. A comparison of classification techniques in hyperspectral image, Proceeding of 2004 Fall Conference, Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, pp.251-256. (가칠오, 김대성, 변영기, 김용일, 2004. 하이퍼스펙트럴 영상의 분류 기법 비교, 한국측량학회 2004년 추계학술발표회논문집, pp.251-256).
  8. Han, D.Y., Y.W. Cho, Y.I. Kim, and Y.W. Lee, 2003. Feature selection for image clasiification of hyperion data, Korean Journal of Remote Sensing, 19(2):171-179(한동엽, 조영욱, 김용일, 이용웅. 2003. Hyperion 영상의 분류를 위한 밴드 추출, 대한원격탐사학회지, 19(2):171-179)
  9. Jensen John R, 2005. Remote Sensing and Digital Image Processing, Sigma Press, pp.473-495. (John R. Jensen, 2005. 원격탐사와 디지털 영상처리, 시그마프레스, pp.473-495.)
  10. Kim, H.H., 2013. Extraction of geospatial information of coastal area using airborne hyperspectral imagery and LiDAR DEM, Doctoral Dissertation, Kumoh National Institute of Technology. (김현호, 2013. 초분광 항공영상과 LiDAR DEM을 이용한 연안지역의 공간정보 추출, 금오공과대학교 박사학위논문)
  11. Kim, S.H., K.S. Lee, J.R. Ma, and M.J. Kook, 2005. Current status of hyperspectral remote sensing: principle, Data Processing Techniques, and Applications, Korean Journal of Remote Sensing, 21(4):341-369 (김선화, 이규성, 마정림, 국민정, 2005. 초분광 원격탐사의 특성, 처리기법 및 활용 현황, 대한원격탐사학회지, 21(4):.341-369).
  12. Kim, T.W., D.J. Choi, K.J. Wi, and Y.C. Seo, 2013. Detection of small green space in an urban area using airborne hyperspectral imagery and spectral angle mapper, Journal of the Korean Association of Geographic Information Studies, 16(2):88-100 (김태우, 최돈정, 위광재, 서용철, 2013. 분광각매퍼 기법을 적용한 항공기 탑재 초분광영상의 소규모 녹지공간 탐지, 한국지리정보학회지, 16(2):88-100). https://doi.org/10.11108/kagis.2013.16.2.088
  13. Kim, T.W., K.J. Wi, and Y.C. Seo, 2012. Correlation analysis with vegetation indices and vegetation-endmembers from airborne hyperspectral data in forest area, Journal of the Korean Association of Geographic Information Studies, 15(3):.52-65 (김태우, 위광재, 서용철. 2012. 산림지역의 항공기 탑재 하이퍼스펙트럴 영상에 대한 식생-Endmember와 식생지수의 상관 분석, 한국지리정보학회지, 15(3):.52-65). https://doi.org/10.11108/kagis.2012.15.3.052
  14. Park, M.H. 2009. A study on feature selection and feature extraction for hyperspectral image classification using canonical correlation classifier, Journal of Korean Society of Civil Engineering 29(3-D):419-421 (박민호. 2009. 정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구, 대한토목학회논문집, 29(3-D):419-421).
  15. Park, R.J., 2010. An experimental study on smoothness regularized LDA in hyperspectral data classification, Journal of the Korean Institute of Intelligent Systems, 21(4):341-369 (박래정, 2010. 하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석, 한국지능시스템학회 논문지, 21(4):341-369).
  16. Rebecca A. Smith, Jennifer L. Irish and Michael Q. Smith, 2000. Airborne LIDAR and airborne hyperspectral imagery: A fusion of two proven sensors for improved hydrographic surveying, Proceedings of Canadian Hydrographic Conference, Montreal, Canada.
  17. Song, J.H., 2005. A Study on Geological Materials Mapping Using the EO-1 Hyperion Image Data, Master Degree Thesis, Chonnam National University (송지훈, 2005. EO-1 Hyperion 영상 자료를 이용한 지질매체 분류에 관한 연구, 전남대학교 석사학위논문).
  18. Suresh Subramanian, Nahum Gat, Michael Sheffield, Jacob Barhen, Nikzad Toomarian, 1997. Methodology for hyperspectral image classification using novel neural network, Algorithms for Multispectral and Hyperspectral Imagery III, SPIE, Vol.3071, Orlando, FL, pp.1-10.

Cited by

  1. 초분광 영상을 활용한 석조문화재 표면오염물 분류 및 정확도 평가 - 경주 굴불사지 석조사면불상을 중심으로 - vol.36, pp.2, 2018, https://doi.org/10.12654/jcs.2020.36.2.01