• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.033 seconds

The Development for Change Detection Technique in the Remotely Sensed Images by GIS (GIS를 이용한 원격탐사영상의 변화탐지기법 개발)

  • 양인태;한성만;박재국;천기선
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.397-408
    • /
    • 2003
  • The information about land use presents future development and vision being the basis of nation development; therefore, it is necessary to more active research that can detect wide land use and changes for the information and efficient management about land use. In this study, we wished to analyze effectively land use changes to Ansan city that is fast changing land use by the latest national land development and urbanization. this study executed land-cover classification using 4 year's Landsat TM images including Ansan city, and efficiently could manage the result of land-cover changes through Arc/Info GRID analysis. Especially, by using change detection system that is developed in this research, we could variously detect land-cover changes, and query and search easily past land-cover changes of pixels that correspond to specific region.

  • PDF

Evaluation of the Pi-SAR Data for Land Cover Discrimination

  • Amarsaikhan, D.;Sato, M.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1087-1089
    • /
    • 2003
  • The aim of this study is to evaluate the Pi-SAR data for land cover discrimination using a standard method. For this purpose, the original polarization and Pauli components of the Pi-SAR X-band and L-band data are used and the results are compared. As a method for the land cover discrimination, the traditional method of statistical maximum likelihood decision rule is selected. To increase the accuracy of the classification result, different spatial thresholds based on local knowledge are determined and used for the actual classification process. Moreover, to reduce the speckle noise and increase the spatial homogeneity of different classes of objects, a speckle suppression filter is applied to the original Pi-SAR data before applying the classification decision rule. Overall, the research indicated that the original Pi-SAR polarization components can be successfully used for separation of different land cover types without taking taking special polarization transformations.

  • PDF

Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery (RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구)

  • Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young;Lee, Sung Hack;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Standardized Agricultural Land Use Classification Scheme at Various Spatial Resolution of Satellite Images

  • Hong Seong Min;Jung In Kyun;Park Geun Ae;Kim Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.7
    • /
    • pp.15-21
    • /
    • 2004
  • This study is to present a standardized agricultural land use classification scheme at various spatial resolution (from 1 m to 30 m) of satellite images including Landsat TM, KOMPSAT-1 EOC, ASTER VNIR and IKONOS panchromatic (PAN) and multi-spectral (MS) images. The satellite images were interpreted especially for identifying agricultural land use, crop types, agricultural facilities and structures of 18 items. It was found that there is a threshold spatial resolution between 4 m and 6.6 m to identify the full items. Thus it is suggested that IKONOS fusion image (MS enhanced by PAN) is required to produce land use map for agricultural purpose.

Standardizing Agriculture-related Land Cover Classification Scheme Using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업관련 토지피복 분류기준 설정 연구)

  • 홍성민;정인균;김성준
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.261-265
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat+ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

  • PDF

Application of Bayesian Probability Rule to the Combination of Spectral and Temporal Contextual Information in Land-cover Classification (토지 피복 분류에서 분광 영상정보와 시간 문맥 정보의 결합을 위한 베이지안 확률 규칙의 적용)

  • Lee, Sang-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • A probabilistic classification framework is presented that can combine temporal contextual information derived from an existing land-cover map in order to improve the classification accuracy of land-cover classes that can not be discriminated well when using spectral information only. The transition probability is computed by using the existing land-cover map and training data, and considered as a priori probability. By combining the a priori probability with conditional probability computed from spectral information via a Bayesian combination rule, the a posteriori probability is finally computed and then the final land-cover types are determined. The method presented in this paper can be adopted to any probabilistic classification algorithms in a simple way, compared with conventional classification methods that require heavy computational loads to incorporate the temporal contextual information. A case study for crop classification using time-series MODIS data sets is carried out to illustrate the applicability of the presented method. The classification accuracies of the land-cover classes, which showed lower classification accuracies when using only spectral information due to the low resolution MODIS data, were much improved by combining the temporal contextual information. It is expected that the presented probabilistic method would be useful both for updating the existing past land-cover maps, and for improving the classification accuracy.

Rural Land Cover Classification using Multispectral Image and LIDAR Data (디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류)

  • Jang Jae-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.101-110
    • /
    • 2006
  • The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

OBJECT-ORIENTED CLASSIFICATION AND APPLICATIONS IN THE LUCC

  • Yang, Guijun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1221-1223
    • /
    • 2003
  • With speediness of economy, the structure of land use has taken lots of change. How can we quickly and exactly obtain detailed land use/cover change information, and then we know land resource amount, quality, distributing and change direction. More and more high resolution satellite systems are under development. So we can make good use of RS data, existed GIS data and GPS data to extract change information and update map. In this paper a fully automated approach for detecting land use/cover change using remote sensing data with object-oriented classification based on GIS data, GPS data is presented (referring to Fig.1). At same time, I realize integrating raster with vector methods of updating the basic land use/land cover map based on 3S technology and this is becoming one of the most important developing direction in 3S application fields; land-use and cover change fields over the world. It has been successful applied in two tasks of The Ministry of Land and Resources P.R.C and taken some of benefit.

  • PDF

Land cover classification based on the phonology of Korea using NOAA-AVHRR

  • Kim, Won-Joo;Nam, Ki-Deock;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.439-442
    • /
    • 1999
  • It is important to analyze the seasonal change profiles of land cover type in large scale for establishing preservation strategy and environmental monitoring. Because the NOAA-AVHRR data sets provide global data with high temporal resolution, it is suitable for the land cover classification of the large area. The objectives of this study were to classify land cover of Korea, to investigate the phenological profiles of land cover. The NOAA-AVHRR data from Jan. 1998 to Dec. 1998 were received by Korea Ocean Research & Development Institute(KORDI) and were used for this study. The NDVI data were produced from this data. And monthly maximum value composite data were made for reducing cloud effect and temporal classification. And the data were classified using the method of supervised classification. To label the land cover classes, they were classified again using generalized vegetation map and Landsat-TM classified image. And the profiles of each class was analyzed according to each month. Results of this study can be summarized as follows. First, it was verified that the use of vegetation map and TM classified map was available to obtain the temporal class labeling with NOAA-AVHRR. Second, phenological characteristics of plant communities of Korea using NOAA-AVHRR was identified. Third, NDVI of North Korea is lower on Summer than that of South Korea. And finally, Forest cover is higher than another cover types. Broadleaf forest is highest on may. Outline of covertype profiles was investigated.

  • PDF