DOI QR코드

DOI QR Code

Rural Land Cover Classification using Multispectral Image and LIDAR Data

디중분광영상과 LIDAR자료를 이용한 농업지역 토지피복 분류

  • Jang Jae-Dong (Department of Geomatics Sciences, Laval University)
  • 장재동 (Laval 대학교 Geomatics 학과)
  • Published : 2006.04.01

Abstract

The accuracy of rural land cover using airborne multispectral images and LEAR (Light Detection And Ranging) data was analyzed. Multispectral image consists of three bands in green, red and near infrared. Intensity image was derived from the first returns of LIDAR, and vegetation height image was calculated by difference between elevation of the first returns and DEM (Digital Elevation Model) derived from the last returns of LIDAR. Using maximum likelihood classification method, three bands of multispectral images, LIDAR vegetation height image, and intensity image were employed for land cover classification. Overall accuracy of classification using all the five images was improved to 85.6% about 10% higher than that using only the three bands of multispectral images. The classification accuracy of rural land cover map using multispectral images and LIDAR images, was improved with clear difference between heights of different crops and between heights of crop and tree by LIDAR data and use of LIDAR intensity for land cover classification.

본 연구에서는 항공 관측으로 얻어진 다중분광영상과 LIDAR (LIght Detection And Ranging) 자료를 이용하여 농업지역의 토지피복 분류 정도를 분석하였다. 다중분광영상은 녹색, 적색, 근적외역의 3분광으로 이루어져 있다. LIDAR 벡터 자료로부터 최초 반사강도 영상과 최초 반사 표고 자료와 최후 반사의 지상 표고 자료의 차이로 산출된 식생 높이 영상이 얻어졌다. 토지피복 분류 방법은 최대우도법을 사용했으며, 다중분광영상의 3밴드 영상 LIDAR의 반사강도 영상, 식생 높이 영상을 이용하였다. 모든 영상을 이용한 토지피복 분류의 전체 정도는 85.6%로 다중분광영상만을 이용한 정도보다 10%이상 향상되었다. 여러 농작물간의 높이의 차이, 수목과 농작물 높이의 차이와 LIDAR 반사강도 차이로 인하여 다중분광영상과 LIDAR 영상을 사용한 토지피복 분류의 정도가 향상되었다.

Keywords

References

  1. Axelsson, P., 1999. Processing of laser scanner dataalgorithms and applications, ISPRS Journal of Photogrammetry & Remote Sensing, 54: 138-147 https://doi.org/10.1016/S0924-2716(99)00008-8
  2. Charaniya, A. P., R. Manduchi, and S. K. Lodha, 2004. Supervised parametric classification of aerial LiDAR data. Proc of Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 2004. Vol.3. 1-8
  3. Hansen, M. C., R. S. Defries, J. R. G. Townshend, and R. Sohlberg, 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach, International Journal of Remote Sensing, 21: 1331-1364 https://doi.org/10.1080/014311600210209
  4. Herold, M., D. A. Roberts, M. E. Gardner, and D. P. E., 2004. Spectrometry for urban area remote sensing-Development and analysisof a spectral library from 350 to 2400 nm, Remote Sensing of Environment, 91: 304-319 https://doi.org/10.1016/j.rse.2004.02.013
  5. Holmgren, J. and A. Persson, 2004. Identifying species of individual trees using airborne laser scanner, Remote Sensing of Environment, 90: 415-423 https://doi.org/10.1016/S0034-4257(03)00140-8
  6. Kilian, J., N. Haala, and M. Englich, 1996. DEM generation from laser scanner data using adaptive tin models, International Archives of Photogrammetry and Remote Sensing, 31: 383-388
  7. King, D. J., D. G. Pitt, and D. A. Pouliot, 2005. Development and evaluation of an automated tree detectiondelineation algorithm for monitoring regenerating coniferous forests, Canadian Journal of Forest research, 35(10): 2332-2345 https://doi.org/10.1139/x05-145
  8. Koukoulas, S. and G. A. Blackburn, 2005. Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data, International Journal of Remote Sensing, 26(3): 431-455 https://doi.org/10.1080/0143116042000298289
  9. Leckie, D., F. A. Gougeon, D. Hill, R. Quinn, L. Armstrong, and R. Shreenan, 2003. Combined high-density lidar and multispectral imagery for individual tree crown analysis, Canadian Journal of Remote Sensing, 29(5): 633-649 https://doi.org/10.5589/m03-024
  10. Nilsson, M., 1996. Estimation of tree heights and stand volume using an airborne lidar system, Remote Sensing of Environment, 56: 1-7 https://doi.org/10.1016/0034-4257(95)00224-3
  11. Reese, H. M., T. M. Lillesand, D. E. Nagel, J. S. Stewart, R. A. Goldmann, T. E. Simmons, J. W. Chipman, and P. A. Tessar, 2002. Statewide land cover derived from multiseasonal Landsat TM data: A retrospective of the WISCLAND project, Remote Sensing of Environment, 82: 224-237 https://doi.org/10.1016/S0034-4257(02)00039-1
  12. Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data. Proc of 23rd Association for Computing Machinery (ACM) National Conference, 1968. 517-524
  13. South, S., J. Qi, and D. P. Lusch, 2004. Optimal classification methods for mapping agricultural tillage practices, Remote Sensing of Environment, 91: 90-97 https://doi.org/10.1016/j.rse.2004.03.001
  14. Story, M. and R. G. Congalton, 1986. Accuracy assessment: A user's perspective, Photogrammetric Engineering and Remote Sensing, 52(3): 397-399
  15. Wang, L., W. P. Sousa, P. Gong, and G. S. Biging, 2004. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama, Remote Sensing of Environment, 91: 432-440 https://doi.org/10.1016/j.rse.2004.04.005
  16. Wozencraft, J. M., 2001. The coastal zone revealed through SHOALS lidar data. Proc of U.S. Hydrographic Conference 2001, NORFOLK, VIRGINIA, May 22-24, 2001
  17. Zarco-Tejadaa, P. J., A. Berjonb, R. Lopez-Lozanoc, J. R. Millerd, P. Martine, V. Cachorrob, M. R. Gonzaleze, and A. De Frutosb, 2005. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy, Remote Sensing of Environment, 99(3): 271-287 https://doi.org/10.1016/j.rse.2005.09.002
  18. Zhang, K., S.-C. Chen, D. Whitman, M.-L. Shyu, J. Yan, and C. Zhang, 2003. A progressive morphological filter for removing nonground measurements from airborne LIDAR Data, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 872-882 https://doi.org/10.1109/TGRS.2003.810682