• Title/Summary/Keyword: lambda matrix

Search Result 83, Processing Time 0.025 seconds

Effect of the Correlated Random Fluctuation in Grating Half-period on the Characteristics of Quarter Wavelength Shifted DFB Lasers (회절격자 반주기의 상관관계가 있는 랜덤 변이가 ${\lambda}/4$ 위상천이 DFB 레이저 특성에 미치는 영향)

  • Han, Jae-Woong;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.48-56
    • /
    • 2000
  • Effects of the correlated random fluctuation in each grating half-period have been studied by an effective index transfer matrix method in quarter wavelength shifted DFB lasers. As the correlation coefficient changes from 0 to -1, single mode stability and wavelength accuracy are less degraded by the reduced error in the grating period. This fact shows that holographic grating fabrication is better than electron-beam lithography in discrete device fabrication provided that the magnitude of the random fluctuation is the same.

  • PDF

A PARALLEL PRECONDITIONER FOR GENERALIZED EIGENVALUE PROBLEMS BY CG-TYPE METHOD

  • MA, SANGBACK;JANG, HO-JONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2001
  • In this study, we shall be concerned with computing in parallel a few of the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue problem, $Ax={\lambda}Bx$, where A is symmetric, and B is symmetric positive definite. Both A and B are large and sparse. Recently iterative algorithms based on the optimization of the Rayleigh quotient have been developed, and CG scheme for the optimization of the Rayleigh quotient has been proven a very attractive and promising technique for large sparse eigenproblems for small extreme eigenvalues. As in the case of a system of linear equations, successful application of the CG scheme to eigenproblems depends also upon the preconditioning techniques. A proper choice of the preconditioner significantly improves the convergence of the CG scheme. The idea underlying the present work is a parallel computation of the Multi-Color Block SSOR preconditioning for the CG optimization of the Rayleigh quotient together with deflation techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n, where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner which is expected to minimize the interprocessor communication due to the blocking. We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message Passing Interface) library was adopted for the interprocessor communications. The test problems were drawn from the discretizations of partial differential equations by finite difference methods.

  • PDF

The Crystal Structure of Cholesteryl Aniline

  • Park, Young-Ja;Kim, Sang-Soo;Lee, Seung-Bun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 1990
  • Cholesteryl aniline ($C_{33}H_{51}N$) is monoclinic, space group $P2_1$, with a = 9.020(3), b = 6.000(1), c = 27.130(9)${\AA},\;{\beta} = 98.22(2)^{\circ}$, Z = 2, Dc = 1.06 g/cm$^3$ and Dm = 1.04 g/cm$^3$. A diffraction data set was collected with Mo-$K_{\alpha}$ radiation (${\lambda} = 0.7107 {\AA}$) on a diffractometer with a graphite monochromator to a maximum 2${\theta}$ value of 50$^{\circ}$, by the ${\omega}-2{\theta}$ scan technique. The coordinates of the non-hydrogen atoms and their anisotropic temperature factors were refined by full-matrix least-squares methods to final R of 0.058. In cholesteryl group, bond distances were normal except in tail part, where high thermal vibration resulted in apparent shortening of the C-C distances. The crystal structure consists of bilayers of thickness $d_{001} = 27.13 {\AA}$, in each of which there is the tail to tail arrangement of molecules aligned in the unit cell with their long axes approximately parallel to the [104] axis. The two halves of the double layer are related to each other by the screw axis.

The Crystal and Molecular Struture of Cholesteryl Isobutyrate

  • Kim, Mi-Hye;Park, Young-Ja;Ahn, Choong-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 1989
  • The structure of cholesteryl isobutyrate, $(CH_3)_2CHCOOC_{27}H_{45}$, was determined by single crystal X-ray diffraction methods. Cholesteryl isobutyrate crystallized monoclinic space group $P2_1$, with a = 15.115 (8)${\AA}$, b = 9.636 (5)${\AA}$, c = 20.224 (9)${\AA}$, ${\beta}$ = 93.15 (5)$^{\circ}$, z = 4, $D_c = 1.03 g/cm^3 $and Dm= 1.04 g/$cm^3$. The intensity data were measured for the 3417 reflections, within $sin{\theta}/{\lambda} = 0.59{\AA}^{-1}$, using an automatic four-circle diffractometer and graphite monochromated Mo-$K_{\alpha}$ radiation. The structure was solved by fragment search Patterson methods and direct methods and refined by full-matrix least-squares methods. The final R factor was 0.129 for 2984 observed reflections. The two symmetry-independent molecules (A) and (B) are almost fully extended. The molecules are in antiparallel array forming monolayers with thickness $d_{100}$ = 15.2${\AA}$, and molecular long axes are nearly parallel to the [$\bar{1}$01] directions. The two distinct molecules form separate stacks with almost the same orientations, but with differing degrees of steroid overlap. Thers is a close packing of cholesteryl groups within the monolayers. The packing type is similar to those of cholesteryl hexanoate and cholesteryl oleate.

The Crystal Structure of Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ) (Bis(N-Methylphenazinium) Bis(Oxalato)Palladate(Ⅱ)의 결정구조)

  • Kim, Se Hwan;NamGung, Hae;Lee, Hyeon Mi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.11
    • /
    • pp.827-832
    • /
    • 1994
  • The crystal structure of bis(N-methylphenazinium) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: ((C_{13}H_{11}N_2)_2[Pd(C_2O_4)_2]) $M_w$ = 672.93, Triclinic, Space Group P1 (No = 2), a = 7.616(8), b = 9.842(3), c = $20.335(7)\AA$, $\alpha$ = 103.53(3), $\beta$ = 90.00(5), $\gamma$ = $112.38(5)^{\circ}$, Z = 2, $V = 1363(2){\AA}^3\;D_c = 1.639\;gcm^{-3},\;{\mu} = 7.3\;cm^{-1},\;F(000) = 680.0$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$= 0.7107\;\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-square methods using Killean & Lawrence weights. The final R and S values were $R = 0.069,\;R_w = 0.050,\;R_{all} = 0.069$ and S = 5.45 for 3120 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angles of 6.3(6) and $57.06(6)^{\circ}$ between their planes. The planar complex anions are sandwiched between slightly bent cations. The interplanar separations of two triads are 3.328 and 3.463 $\AA$, respectively. The triads are stacked along b-axis, but their orientations are different based on dihedral angle $59.08(9)^{\circ}$ of two complex anions.

  • PDF

The Crystal and Molecular Structure of 6-Ethyl-5,6-Dihydrouracil (6-에틸-5,6-디히드로우라실의 결정 및 분자구조)

  • An, Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.161-166
    • /
    • 1996
  • 6-ethyl-5,6-dihydrouracil($C_6H_10N_2O_2$) is monoclinic, space group $$P2_{1}c}$$ with a=10.302(2), b=10.419(3), $c=7.095(1)\AA$, $\beta=106.6(0)$, Z=4, $V=729.7(3)\AA$^3$$, $D_c=1.29 g/cm^3,\;{\lambda}(MoK\alpha)=0.71073\AA$, $\mu=0.010cm^{-1}$, F(000)=304, and R=0.054 for 1070 unique observed reflection with F>4.0 $\sigma(F).$ The structure was solved by direct methods and refined by full-matrix least-squares refinement with the fixed C-H bond length at $0.96\AA.$ The hydrouracil molecule makes an envelope conformation with the ethyl substituent oriented to an axial position attainable to a varying degree of steric strain. There are two intermolecular hydrogen-bondings via N-H---O interactions, being nearly parallel to the 100 plane. The shortest distance between molecules is $3.187\AA$ of C(4) and O(8) (-x,-y, 1-z).

  • PDF

The Crystal Structure of Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ) (Bis(1,2-diaminopropane)palladium(Ⅱ) Bis(oxalato)palladate(Ⅱ)의 결정구조)

  • Kim Sei Hwan;NagGung Hae;Jeon, Ho Jung
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.599-603
    • /
    • 1993
  • Crystal structure of bis(1,2-diaminopropane)palladium(II) bis(oxalato)palladate(II) has been determined by X-ray crystallography. Crystal data: $Pd_2C_{10}H_{10}N_{4}O_{8}$, $M_W$ = 573.09, orthorhombic, space group $P_{ccn}$ (No = 56), a = 16.178(5), b = 16.381(6), c = 6.685(2)$\{AA}$, V = 1771.6 $\{AA}^3$, $M_W$W = 573.09, $D_c$ = 2.014 g${\cdot}c\;m^{-3}$, Z = 4, T = 294K, F(000) = 1056.0 and $\mu$ = 20.466 c$m^{-1}$. The intensity data were collected with $Mo-K\alpha$ radiation (${\lambda}$ = 0.7107 $\AA)$ on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by Patterson method and refined by full matrix least-squares methods using Pivot weights. The final R and S values were R = 0.065, $R_W = 0.059, R_{all}$ = 0.065 and S = 4.315 for 605 observed reflections. Both cation and anion complexes are essentially planar and have dihedral angle of $18(l)^{\circ}$ between thier planes. In the crystal structure, they do not have the Magnus's salt type mixed stacks; instead, the complex anions form regular stacks along the c-axis with the M-M bond length of $3.343(5)\AA$ and their stacks are surrounded by the complex cations through hydrogen bonds with the nitrogen-oxygen distances of 2.94(3) and $3.31(4)\AA.$

  • PDF

Structure of a Spiro Orthocarbonate, 3,3'-Spirobi[1H, 5H-naphtho [1,8-ef] [1,3] dioxocin] (Spiro Orthocarbonate, 3,3'-Spirobi[1H, 5H-naphtho[1,8-ef] [1,3] dioxocin]의 분자구조)

  • Young Mi Song;Jung Mi Shin;Young Ja Park
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.536-539
    • /
    • 1992
  • Eight-membered ring spiro orthocarbonate (C$_{25}H_{20}O_4$, M$_r$ = 384) is monoclinic, space group C2/c, with a = 15.319(4), b = 9.057(3), c = 13.168(3)${\AA}$, ${\beta}$ = 98.53(3)$^{\circ}$, Z = 4, F(000) = 808, T = 290 K, ${\mu}$(Mo-K${\alpha}$) = 0.55 cm$_1$, D$_c$ = 1.36 g/cm$^3$ and D$_m$ = 1.40 g/cm$^3$. The intensity data were collected with Mo-K${\alpha}$ radiation (${\lambda}$ = 0.7107 ${\AA}$) on an automatic four-circle diffractometer with a graphite monochromater. The structure was solved by direct methods and refined by full matrix least-squares methods. The final R value was 0.052 for 1412 observed reflections. The molecule has C$_2$point symmetry. The eight-membered ring has a chair conformation with pseudo-C$_s$ symmetry. The naphthyl ring is planar with the C-C bond lengths being in the range of 1.352∼1.444${\AA}$ and bond angles of 117.2∼123.5$^{\circ}$. The bond lengths of C(1)-C(9), C(8)-C(9) and C(9)-C(10) are somewhat longer than those of the other C-C bonds.

  • PDF

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)- Based Cloning of Enolase, ENO1, from Cryphonectria parasitica

  • Kim, Myoung-Ju;Chung, Hea-Jong;Park, Seung-Moon;Park, Sung-Goo;Chung, Dae-Kyun;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.620-627
    • /
    • 2004
  • On the foundation of a database of genome sequences and protein analyses, the ability to clone a gene based on a peptide analysis is becoming more feasible and effective for identifying a specific gene and its protein product of interest. As such, the current study conducted a protein analysis using 2-D PAGE followed by MALDI- TOF and ESI-MS to identify a highly expressed gene product of C. parasitica. A distinctive and highly expressed protein spot with a molecular size of 47.2 kDa was randomly selected and MALDI-TOF MS analysis was conducted. A homology search indicated that the protein appeared to be a fungal enolase (enol). Meanwhile, multiple alignments of fungal enolases revealed a conserved amino acid sequence, from which degenerated primers were designed. A screening of the genomic $\lambda$ library of C. parasitica, using the PCR amplicon as a probe, was conducted to obtain the full-length gene, while RT-PCR was performed for the cDNA. The E. coli-expressed eno 1 exhibited enolase enzymatic activity, indicating that the cloned gene encoded the C. parasitica enolase. Moreover, ESI-MS of two of the separated peptides resolved from the protein spot on 2-D PAGE revealed sequences identical to the deduced sequences, suggesting that the cloned gene indeed encoded the resolved protein spot. Northern blot analysis indicated a consistent accumulation of an eno1 transcript during the cultivation.

ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)γ OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

  • Jeong, Ja-A.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.657-673
    • /
    • 2009
  • The fixed point algebra $C^*(E)^{\gamma}$ of a gauge action $\gamma$ on a graph $C^*$-algebra $C^*(E)$ and its AF subalgebras $C^*(E)^{\gamma}_{\upsilon}$ associated to each vertex v do play an important role for the study of dynamical properties of $C^*(E)$. In this paper, we consider the stability of $C^*(E)^{\gamma}$ (an AF algebra is either stable or equipped with a (nonzero bounded) trace). It is known that $C^*(E)^{\gamma}$ is stably isomorphic to a graph $C^*$-algebra $C^*(E_{\mathbb{Z}}\;{\times}\;E)$ which we observe being stable. We first give an explicit isomorphism from $C^*(E)^{\gamma}$ to a full hereditary $C^*$-subalgebra of $C^*(E_{\mathbb{N}}\;{\times}\;E)({\subset}\;C^*(E_{\mathbb{Z}}\;{\times}\;E))$ and then show that $C^*(E_{\mathbb{N}}\;{\times}\;E)$ is stable whenever $C^*(E)^{\gamma}$ is so. Thus $C^*(E)^{\gamma}$ cannot be stable if $C^*(E_{\mathbb{N}}\;{\times}\;E)$ admits a trace. It is shown that this is the case if the vertex matrix of E has an eigenvector with an eigenvalue $\lambda$ > 1. The AF algebras $C^*(E)^{\gamma}_{\upsilon}$ are shown to be nonstable whenever E is irreducible. Several examples are discussed.