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Abstract. In this study, we shall be concerned with computing in parallel a few of
the smallest eigenvalues and their corresponding eigenvectors of the eigenvalue prob-
lem, Ax = λBx, where A is symmetric, and B is symmetric positive definite. Both A
and B are large and sparse. Recently iterative algorithms based on the optimization
of the Rayleigh quotient have been developed, and CG scheme for the optimization
of the Rayleigh quotient has been proven a very attractive and promising technique
for large sparse eigenproblems for small extreme eigenvalues. As in the case of a
system of linear equations, successful application of the CG scheme to eigenproblems
depends also upon the preconditioning techniques. A proper choice of the precondi-
tioner significantly improves the convergence of the CG scheme. The idea underlying
the present work is a parallel computation of the Multi-Color Block SSOR precon-
ditioning for the CG optimization of the Rayleigh quotient together with deflation
techniques. Multi-Coloring is a simple technique to obatin the parallelism of order n,
where n is the dimension of the matrix. Block SSOR is a symmetric preconditioner
which is expected to minimize the interprocessor communication due to the blocking.
We implemented the results on the CRAY-T3E with 128 nodes. The MPI(Message
Passing Interface) library was adopted for the interprocessor communications. The
test problems were drawn from the discretizations of partial differential equations by
finite difference methods.

1. Introduction

Recently, there has been many efforts to find the small extreme eigenvalues of the
generalized eigenproblem by iterative Rayleigh-quotient minimization methods by CG-
type methods[2,4,5,12]. Such applications arise in many cases, such as in structural
mechanics or computational chemistry, to name a few. In this paper we propose a par-
allel version of the same method with incomplete Cholesky factorization preconditioner
on the CRAY-T3E. After the smallest eigenvalue is found, the PCG scheme together
with deflation technique is used to compute the next eigenvalues. We offer a simple
technique called the orthogonal deflation[6].

Iterative solution of eigenvalue problems or linear systems requires a preconditioning
to accelerate the convergence. Incomplete Cholesky factorization is one of the most
popular technique.
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Parallel processing is a simple way to increase the speed. But incomplete Cholesky
factorization is inherently serial. In this paper we use a block-type parallel precon-
ditioner, Multi-Color Block SSOR(Symmetric Successive OverRelaxarion) precondi-
tioner.

The CRAY-T3E computer in ETRI, Korea is a massively parallel message-passing
machine with the 136 individual processing node(PE)s interconnected in a 3D-Torus
structure. Each PE, a DEC Alpha EV5.6 chip, is capable of delivering up tp 900
Megaflops,amounting to 115 GigaFlops in total. Each PE has 128 MBs of core memory.

We present results from our numerical experiments drawn from the FDM discretiza-
tions of the elliptic partial differential equations.

2. Computation of the leftmost eigenpairs

Let A and B be sparse symmetric positive definite matrices of dimension n. Consider
the generalized eigenvalue problem

(1) Ax = λBx.

Denote by 0 < λ1 < λ2 ≤ · · · ≤ λn and z1, z2, · · · , zn the eigenvalues and the corre-
sponding eigenvectors.

We recall that the eigenvectors of (1) are the stationary points of the Rayleigh
quotient

(2) R(x) =
xT Ax

xT Bx
,

and the gradient of R(x) is given by

g(x) =
2

xT Bx
[Ax−R(x)Bx].

To simplify the notation we set g(k) = g(x(k)) = 2r(k)/xT Bx, r(k) being the residual
vector. To compute a number of the leftmost eigenpairs of (1), the PCG with par-
tial deflation was first proposed [12]. This scheme evaluates one eigenpair at a time
by a deflation procedure requiring the assessment of a shifting parameter, which is
problem dependent. Later, the PCG with orthogonal deflation has been developed [6],
allowing for the simultaneous evaluation of the leftmost eigenpairs of (1). PCG with
orthogonal deflation does not need any acceleratioin parameter, and is more suited to
parallelization.

The basic idea underlying PCG with orthogonal deflation is as follows. Assume that
the eigenpairs (λi, zi), i = 1, · · · , r − 1, have been computed. To avoid convergence
toward one of the computed eigenvectors zi, i = 1, · · · , r − 1, the next initial vector
x̃

(0)
r is chosen to be B-orthogonal to Zr−1 = span{zi | i = 1, · · · , r − 1}. And the

direction vector p̃
(k)
r is evaluated by B-orthogonalizing p

(k)
r with respect to Zr−1. Also

the new approximation vector x̃
(k)
r is evaluated by B-normalizing x

(k)
r . Now from the
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characterization of the eigenvectors [8]

R(zr) = min
x⊥B

Zr−1

R(x),

x̃
(k)
r converges toward zr as k increases. That is, after zi, i = 1, · · · , r − 1 have been

evaluated, zr can be determined by minimizing R(x) over the vector space which is the
B-orthogonal complement to Zr−1.

The minimization is performed by the PCG scheme. In present work, a Multi-Color
Block SSOR preconditioner M , which will be discussed in §3, is used with parallel
computation aspect.

To achieve convergence, usually a recurring ‘restart’ operation is used [6]. Alter-
natively an appropriate choice of the β parameter in the PCG scheme may avoid the
restart. Following [9],

(3) β(k) =
g(k)T g(k)

g(k−1)T g(k−1)

is set.
The PCG scheme with orthogonal deflation consists of the following steps:

Step 1. Compute the preconditioner M .
Step 2. Give an initial vector x(0) such that ZT Bx(0) = 0 (i.e. x(0) is taken to be
B-orthgonal to Z. Choose a tolerance value and the allowed maximum number of
iterations NMAX. Set k = 0 (iteration index).
Step 3. Construct the initial gradient direction g(0).

Set p(0) = −g(0) and Mh(0) = g(0).

Step 4. If k = 0 then set β(k) = 0, otherwise evaluate

Mh(k) = g(k) and β(k) by (3).

Step 5. Compute p̃(k+1) = h(k) + β(k)p(k).
Step 6. Evaluate p(k) by B-orthogonalizing p̃(k) with respect to Z.
Step 7. Compute α(k+1) by minimizing R(x(k+1)) [7].
Step 8. Evaluate x̃(k+1) = x(k) + α(k+1)p(k+1).
Step 9. The new approximation x(k+1) is evaluated by B-normalizing x̃(k+1).
Step 10. Test on convergence.

3. Multi-Color Block SSOR preconditioning

Multi-Coloring is a way to achieve parallelism of order N , where N is the order of the
matrix. For example, it is known that for 5-point Laplacian we can order the matrix in
2-colors so that the nodes are not adjacent with the nodes with the same color. This
is known as Red/Black ordering. For planar graphs maximum four colors are needed.
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Blocked methods are useful in that they minimize the interprocessor communica-
tions, and increases the convergence rate as compared to point methods. SSOR is
a symmetric preconditioner that is expected to perform as efficiently as Incomplete
Cholesky factorization combined with blocking. Instead we need to invert the diagonal
block. In this paper we used the MA48 package from the Harwell library, which is a
direct method using reordering strategy to reduce the fill-ins. Since MA48 type employ
some form of pivoting strategy, this is expected to perform better for ill-conditioned
matrices than Incomplete Cholesky factorization, which does not adopt any type of
pivoting strategy.

SSOR needs a ω parameter for overrelaxation. However, it is known that the con-
vergence rate is not so sensitive to the ω parameter.

Let the domain be divided into L blocks. Suppose that we apply a multi-coloring
technique, such as a greedy algorithm described in [10], to these blocks so that a block of
one color has no coupling with a block of the same color. Let Dj be the coupling within
the block j, and color(j) be the color of the j-th block. We denote by Uj,k, k = 1, q, j < k
and Lj,k, k < j the couplings between the j-th color block and the k-th block.

Then, we can describe the Multi-Color Block SSOR as follows.

Algorithm 3.1. Multi-Color Block SSOR
Let q be the total number of colors, and color(i), i=1, L, be the array of the color for
each block.

1. Choose u0, and ω > 0.
2. For i > 0 Until Convergence Do
3. For kolor = 1, q Do
4. For j = 1, L Do
5. if(color(j) == kolor) then

6.(ui+1/2)j
= Dj

−1(b− ω ∗∑k=q
k 6=kolor Lj,kui+1/2).

7. endif
8. Endfor
9. For kolor = 1, q Do
10. For j = 1, L Do
11. if(color(j) == kolor) then

12. (ui+1)j = Dj
−1(ui+1/2 − ω ∗∑k=q

k 6=kolor Uj,kui+1).
13. endif
14. Endfor
15. Endfor
16. Endfor

Note that the innermost loop in line six and seven can be executed in parallel.
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4. Test problems

• Problem 1 Poisson Equation on a Square

−4u = f, Ω = (0, 1)× (0, 1)
u = 0 on δΩ
f = x(1− x) + y(1− y)

• Problem 2[3] Elman’s problem

−(bux)x − (cuy)y + (du)x + dux + (eu)y + euy + fu = g(4)

Ω = (0, 1)× (0, 1)
u = 0 on δΩ

where b = exp (−xy), c = exp (xy), d = β(x + y),
e = γ(x + y), f = 1

(1+xy) ,
and g is such that exact solution u = x exp (xy) sin (πx) sin (πy)

5. Results

Tables 1 - 3 contain the timings for the cases without preconditioning and with
Multi-Color Block SSOR preconditioning. All of our test problems assume B=I. We
used MPI(Message Passing Machine) library for the interprocessor communications.
For the first two problems we used the Block-Row mapping for the graph partitioning
of the matrix. For the third problem we have used the Metis code developed by V.
Kumar of the University of Minnesota. The number of colors needed is two for the first
two problems and reaches 6 for the three dimensional problem of problem three. For
the multi-coloring we have used the greedy heuristic as described in [10].

For the first problem the matrix is derogatory but not defective, i.e, the matrix has N
linearly independent eigenvectors, but the matrix has two eigenvectors for some eigen-
values. With the orthogonal deflation strategy the convergence is very slow, especially
with the second eigenvector for the eigenvalue with two eigenvectors. For this problem
the timing gets worse with the preconditioning. For the second problem we get a normal
acceleration with the preconditioning. The third problem is very ill-conditioned, com-
ing from Cylinder Shell problem of Harwell/Boeing collection. The condition numbers
of ‘s1rmq4m1’ is 1.86, while that of ‘s3dkq4m2’ is 1.911. It is reported in [2] that for
the third problem Incomplete Cholesky Factorization preconditioning does not achieve
the convergence. But our preconditioner does achieve the convergence. As for the ω
parameter we set ω to be 1.

For the inversion of diagonal blocks in Block SSOR method, we have used the MA48
routine of the Harwell library, which adopts direct methods for sparse matrices with
the reordering strategy reducing fill-ins. The cost of the MA48 is roughly proportional
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to L2, where L is the size of the matrix. Since L is roughly N/p, we expect a quadratic
decrease with the increasing number of processors.

Table 1. Problem 1, with FDM

p = 4 p = 8 p = 16 p = 32 p = 64
No Preconditioning/MC-BSSOR Preconditioning

N=1282 14.4/21.2 78.2/8.29 13.1/13.8 17.8/18.3 33.3/31.0
N=2562 146/446 107/64.8 47.0/53.4 357/607 113/134
N=5122 5500/ 841 172/ 1049 138/8164

Table 2. Problem 2 with FDM

p = 4 p = 8 p = 16 p = 32 p = 64
Cpu time/Iterations

N=1282 29.4/19.0 21.2/9.7 21.6/10.0 22.8/5.13 33.4/6.63
N=2562 191/139 107/61.7 75.8/56.6 64.7/19.6 77.4/15.1
N=5122 376/225 242/117 211/66.9

Table 3. Cylinder Shell problem from the Harwell/Boeing Collection

p = 4 p = 8 p = 16 p = 32 p = 64
Cpu time/Iterations

s1rmq4m1 SL/102 SL/52.1 SL/SL SL/SL SL/SL
s3dkq4m2 SL/6043 SL/2977

6. Conclusions

• Except for the first derogatory matrix, our preconditioner shows a normal be-
haviour even for the ill-conditioned matrices of the third problem.

• For the first problem our algorithm needs an improvement.
• Due to the nature of MA48 library, we expect our preconditioner to be scalable

with the increasing number of processors.
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