• Title/Summary/Keyword: lactic bacteria strain

Search Result 392, Processing Time 0.028 seconds

Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum

  • Park, Ki-Bum;Oh, Suk-Heung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.324-329
    • /
    • 2004
  • In order to investigate the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in lactic acid bacteria, we cloned a glutamate decarboxylase (GAD) gene from Lactobacillus plantarum using polymerase chain reaction (PCR). One PCR product DNA was obtained and inserted into a TA cloning vector with a T7 promoter. The recombinant plasmid was used to transform E. coli. The insertion of the product was con­firmed by EcoRI digestion of the plasmid purified from the transformed E. coli. Nucleotide sequence analysis showed that the insert is a full-length Lactobacillus plantarum GAD and that the sequence is $100\%$ and $72\%$ identical to the regions of Lactobacillus plantarum GAD and Lactococcus lactis GAD sequences deposited in GenBank, accession nos: NP786643 and NP267446, respectively. The amino acid sequence deduced from the cloned Lactobacillus plantarum GAD gene showed $100\%$ and $68\%$ identities to the GAD sequences deduced from the genes of the NP786643 and NP267446, respectively. To express the GAD protein in E. coli, an expression vector with the GAD gene (pkk/GAD) was constructed and used to transform the UT481 E. coli strain and the expression was confirmed by analyzing the enzyme activity. The Lactobacillus plantarum GAD gene obtained may facilitate the study of the molecular mechanisms regulating GABA metabolism in lactic acid bacteria.

Molecular Typing of Leuconostoc citreum Strains Isolated from Korean Fermented Foods Using a Random Amplified Polymorphic DNA Marker

  • Kaur, Jasmine;Lee, Sulhee;Sharma, Anshul;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.174-179
    • /
    • 2017
  • For preliminary molecular typing, PCR-based fingerprinting using random amplified polymorphic DNA (RAPD) is the method of choice. In this study, 14 bacterial strains were isolated from different Korean food sources, identified using 16S rRNA gene sequencing, and characterized through RAPD-PCR. Two PCR primers (239 and KAY3) generated a total of 130 RAPD bands, 14 distinct PCR profiles, 10 polymorphic bands, one monomorphic band, and four unique bands. Dendrogram-based analysis with primer 239 showed that all 14 strains could be divided into seven clades out of which clade VII had the maximum of seven. In contrast, dendrogram analysis with the primer KAY3 divided the 14 L. citreum strains into four clades out of which clade IV consisted of a maximum of 10 strains out of 14. This research identified and characterized bacterial populations associated with different Korean foods. The proposed RAPD-PCR method, based on sequence amplification, could easily identify and discriminate the lactic acid bacteria species at the strain-specific level and could be used as a highly reliable genomic fingerprinting tool.

Selection of Lactic Acid Bacteria suitable for Manufacture of Freeze-dried Coffee (동결건조커피 제조에 적합한 유산균 균주 선발)

  • Ko, Bong Soo;Lim, Sang Ho;Han, Sung Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.6
    • /
    • pp.1023-1029
    • /
    • 2016
  • Probiotic functional foods are known to have various functional effects such as intestinal regulation, modulation of immune system, reduction of allergies, and lowering of cholesterol. The purpose of this study was to select probiotic strain that is most suitable for freeze-dried coffee for the development of functional coffee products. The survival rate of probiotics, at drinking condition of coffee, at acid, at bile and after freeze-dried in coffee were measured on 1 strain isolated from commercial freeze-dried coffee, 8 strains used as fermented milk starter, 1 Bifidobacterium and 1 Bacillus coagulans. Bacillus coagulans showed the highest survival rate from $2.4{\times}10^7cfu/g$ to $2.0{\times}10^7cfu/g$ especially after freeze-drying. The results at drinking condition of coffee, at acid tolerance, at bile tolerance and at storage test showed significantly better survival rate of Bacillus coagulans than that of control (Lactobacillus casei). Especially, Bacillus coagulans showed 3.8-fold higher survival rate at acid tolerance (pH 1, 120 minutes) than control. Thus, the lactic acid-producing Bacillus coagulans is characterized as a probiotic strain suitable for functional coffee formulation and commercialization.

The Effects of Probiotic Lactobacillus reuteri Pg4 Strain on Intestinal Characteristics and Performance in Broilers

  • Yu, B.;Liu, J.R.;Chiou, M.Y.;Hsu, Y.R.;Chiou, W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1243-1251
    • /
    • 2007
  • This study was conducted to evaluate the feasibility of using L. reuteri Pg4, a strain isolated from the gastrointestinal (GI) tract of healthy broilers, as a probiotic. In preliminary in vitro studies the Pg4 strain was proven capable of tolerating acid and bile salts, inhibiting pathogenic bacteria and can adhere to intestinal epithelial cells. The probiotic properties were then evaluated on the basis of the broiler's growth performance, intestinal microbial population and cecal volatile fatty acid and lactic acid concentrations under conventional feeding. Dietary supplementation of dried L. reuteri Pg4 decreased significantly feed intake in grower chickens and improved significantly the feed conversion by 5% in a 0-6 weeks feeding period compared with the control group. The Lactobacillus counts in the crop, ileum, and cecum of the probiotic group were higher than in the control group. The L. reuteri Pg4 strain was traceable in the GI tract of probiotic supplemented chicks and showed capability of survival in the intestine for a protracted period. The probiotic group had a higher lactic acid concentration and lower pH value in the cecum than the control chicks. Probiotic supplement also affected the histology of the intestinal mucosa of chicks. The present findings demonstrated that L. reuteri Pg4 possesses probiotic characteristics and it is suggested, therefore, that the organism could be a candidate for a new probiotic strain.

Milk Fermented with Pediococcus acidilactici Strain BE Improves High Blood Glucose Levels and Pancreatic Beta-Cell Function in Diabetic Rats

  • Widodo Widodo;Hanna Respati Putri Kusumaningrum;Hevi Wihadmadyatami;Anggi Lukman Wicaksana
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.170-183
    • /
    • 2023
  • This study evaluated the effects of milk fermented with Pediococcus acidilactici strain BE and Pediococcus pentosaceus strain M103 on diabetes in rats (Rattus norvegicus). The bacteria were separately used as starter cultures for milk fermentation, and the products were then fed to diabetic rats for 15 days. Blood glucose levels, immunohistochemical and histological indicators, lipid profiles, and total lactic acid bacterium counts were evaluated before and after treatment. The administration of milk fermented with P. acidilactici strain BE reduced blood glucose levels from 410.27±51.60 to 304.07±9.88 mg/dL (p<0.05), similar to the effects of metformin (from 382.30±13.39 mg/dL to 253.33±40.66 mg/dL, p<0.05). Increased insulin production was observed in diabetic rats fed milk fermented with P. acidilactici strain BE concomitant with an increased number and percentage area of immunoreactive beta-cells. The structure of insulin-producing beta-cells was improved in diabetic rats fed milk fermented with P. acidilactici strain BE or metformin (insulin receptor substrate scores of 5.33±0.94 and 3.5±0.5, respectively). This suggests that the administration of milk fermented with P. acidilactici BE potentially reduces blood glucose levels and improves pancreatic beta-cell function in diabetic rats.

Evaluation of Lysozyme to Control Vinification Process and Histamine Production in Rioja Wines

  • Lopez, Isabel;Santamaria, Pilar;Tenorio, Carmen;Garijo, Patrocinio;Gutierrez, Ana Rosa;Lopez, Rosa
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1005-1012
    • /
    • 2009
  • Lysozyme and the reduction of metabisulfite addition to red wine were evaluated during a winemaking process and after malolactic fermentation (MLF). Treatment, with lysozyme, of the must from Tempranillo grapes and at the end of alcoholic fermentation (AF) caused the 100% implantation of the inoculated bacterial strain and shortened the duration of MLF by 7 days. At the end of the MLF, wines treated with lysozyme showed lower volatile acidity, color intensity, and biogenic amine content. The differences in color intensity disappeared during wine stabilization. The lysozyme addition after MLF led to lower histamine concentrations in wines. These phenomena occurred irrespective of the lactic acid bacteria (LAB) proliferation control and of the Oenococcus oeni dominant strain identified at this period. The results of this study show the significance of preventive use of lysozyme in vinification of red wine to maintain low histamine levels and ensure a successful implantation of inoculated O. oeni starters.

Enhancement of Ginsenoside Rg1 and Rg5 Contents in an Extract of Wood-cultivated Ginseng by Lactobacillus plantarum (Lactobacillus plantarum을 이용한 산양삼 추출물의 진세노사이드 Rg1 및 Rg5의 함량 증대)

  • Kwon, Hun-Joo;Cho, Yun-Ji;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.305-310
    • /
    • 2017
  • Twelve lactic acid bacteria harboring ${\alpha}$-rhamnosidase (EC 3.2.1.40) activity were isolated from traditional Korean foods. The 6 strains (Weissella confuse [n = 1], Lactobacillus pentosus [n = 1], and Lactobacillus plantarum [n = 4]) with the highest rhamnosidase activity were selected for bioconversion of an extract of wood-cultivated ginseng. The L. plantarum MBE/L2990 strain increased ginsenoside content (0.58 mg for Rg1 and 0.24 mg for Rg5) and showed higher bioconversion activity than the control strain L. plantarum KCTC21004 (56% and 42% increase for Rg1 and Rg5, respectively). L. plantarum MBE/L2990 was deposited at the Korean Collection for Type Cultures as Lactobacillus plantarum KCTC18529P.

Screening of Immunostimulatory Probiotic Lactic Acid Bacteria from Chicken Feces as Animal Probiotics

  • Lee, Eun-Kyung;Lee, Na-Kyoung;Lee, Si-Kyung;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.634-640
    • /
    • 2010
  • The principal objective of this study was to screen and select acid-tolerant Lactobacillus strains from chicken feces, feeds, and other sources. Fourty six strains evidencing acid tolerance (pH 3.5) were isolated in this study. Among them, nine strains exhibited marked immunostimulatory effects. Therefore, nine candidate strains were characterized for probiotic use. In order to evaluate macrophage activation, NO production was measured using RAW 264.7 cells. In particular, three strains (FC812, FC222, and FC113) evidenced the highest levels of NO production measured at $38.39{\pm}20.01,\;35.06{\pm}27.73$, and $33.88{\pm}15.99{\mu}M$, respectively, at a concentration of $10^{8}CFU/mL$. The majority of strains, with the exception of strain FC322, evidenced marked resistance to artificial gastric juice (pH 2.5 with 1%(w/v) pepsin). Additionally, strains FC222, FC421, FC511, and FC721 were highly resistant to artificial bile acid (0.1%(w/v) oxgall), whereas strains FC113, FC322, FC422, FC621, and FC812 were the least resistant to bile. All nine strains exerted antimicrobial effects against chickenrelated pathogens. Additionally, all nine strains were found to be resistant to several antibiotics. The isolated strains, except for strain FC322, were tentatively identified as Lactobacillus salivarius, using an API 50 CHL kit. These results demonstrate that some probiotic organisms may potentially probiotic properties, and thus may serve as an effective alternative to antibiotics in animal applications.

Probiotic Properties of Pediococcus pentosaceus SH-10 Isolated from the Hard Clam Meretrix meretrix Shikhae (백합(Meretrix meretrix)식해에서 분리한 Pediococcus pentosaceus SH-10의 생균제적 특성)

  • Song, Hyun-Jung;Kim, Kang-Jin;Kim, Hee-Dai;Yoo, Jung-Hee;Koo, Jae-Geun;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.605-611
    • /
    • 2011
  • This study examined the suitability of characteristics of potential strains of probiotic bacteria. Among 25 lactic acid bacteria isolated from Korean traditional fermented food, the Hard Clam Meretrix meretrix Shikhae, the SH-10 strain, which exhibited superior resistance to low pH and bile salts, was selected as a potential probiotic bacteria. By examining carbohydrate utilization, morphological properties, and the 16S rRNA gene sequence, the SH-10 strain was identified as Pediococcus pentosaceus (hereafter, P. pentosaceus SH-10). P. pentosaceus SH-10 was resistant to amikacin, cefotetan, ciprofloxacin, gentamicin, kanamycin, nalidixic acid, streptomycin, and vancomycin. Tests of antimicrobial activities against pathogens such as Bacillus cereus, Listeria monocytogenes, Salmonella choleraesuis, and Staphylococcus aureus, indicated that P. pentosaceus SH-10 inhibited the growth of pathogenic bacteria. These results suggest that P. pentosaceus SH-10 can be developed as a probiotic bacteria.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.