DOI QR코드

DOI QR Code

Screening of Immunostimulatory Probiotic Lactic Acid Bacteria from Chicken Feces as Animal Probiotics

  • Lee, Eun-Kyung (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Na-Kyoung (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Chang, Hyo-Ihl (School of Life Science and Biotechnology, Korea University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science and Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2010.05.31
  • Accepted : 2010.07.22
  • Published : 2010.08.31

Abstract

The principal objective of this study was to screen and select acid-tolerant Lactobacillus strains from chicken feces, feeds, and other sources. Fourty six strains evidencing acid tolerance (pH 3.5) were isolated in this study. Among them, nine strains exhibited marked immunostimulatory effects. Therefore, nine candidate strains were characterized for probiotic use. In order to evaluate macrophage activation, NO production was measured using RAW 264.7 cells. In particular, three strains (FC812, FC222, and FC113) evidenced the highest levels of NO production measured at $38.39{\pm}20.01,\;35.06{\pm}27.73$, and $33.88{\pm}15.99{\mu}M$, respectively, at a concentration of $10^{8}CFU/mL$. The majority of strains, with the exception of strain FC322, evidenced marked resistance to artificial gastric juice (pH 2.5 with 1%(w/v) pepsin). Additionally, strains FC222, FC421, FC511, and FC721 were highly resistant to artificial bile acid (0.1%(w/v) oxgall), whereas strains FC113, FC322, FC422, FC621, and FC812 were the least resistant to bile. All nine strains exerted antimicrobial effects against chickenrelated pathogens. Additionally, all nine strains were found to be resistant to several antibiotics. The isolated strains, except for strain FC322, were tentatively identified as Lactobacillus salivarius, using an API 50 CHL kit. These results demonstrate that some probiotic organisms may potentially probiotic properties, and thus may serve as an effective alternative to antibiotics in animal applications.

Keywords

References

  1. Ayad, E. H. E., Verheul, A., Wouters, J. T. M., and Smit, G. (2002) Antimicrobial-producing wild lactococci isolated from artisanal and non-dairy origins. Int. Dairy J. 12, 145-150. https://doi.org/10.1016/S0958-6946(01)00133-9
  2. Bogdan, C., Rollinghoff, M., and Diefenbach, A. (2000) The role of nitric oxide in innate immunity. Immunol. Rev. 173, 17-26. https://doi.org/10.1034/j.1600-065X.2000.917307.x
  3. Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907-916. https://doi.org/10.1038/ni1001-907
  4. Caplice, E. and Fitzgerald, G. F. (1999) Food fermentation: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50, 131-149. https://doi.org/10.1016/S0168-1605(99)00082-3
  5. Chateau, N., Deschamps, A. M., and Sassi, A. H. (1994) Heterogeneity of bile salts resistance in the Lactobacillus isolates of a probiotic consortium. Lett. Appl. Microbiol. 18, 42-44. https://doi.org/10.1111/j.1472-765X.1994.tb00796.x
  6. Danielsen, M. and Wind, A. (2003) Susceptibility of Lactobacillus spp. to antimicrobial agents. Int. J. Food Microbiol. 82, 1-11. https://doi.org/10.1016/S0168-1605(02)00254-4
  7. De Rodas, B. Z., Gilliland, S. E., and Maxwell, C. V. (1996) Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J. Dairy Sci. 79, 2121-2128. https://doi.org/10.3168/jds.S0022-0302(96)76586-4
  8. Guzik, T. J., Korbut, R., and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.
  9. Ha, C. G., Cho, J. K., Chai, Y. G., and Heo, K. C. (2004) Isolation and identification of lactic bacteria containing superior activity of the bile salt deconjugation. Korean J. Food Sci. Ani. Resour. 24, 164-170.
  10. Hoa, N. T., Baccigalupi, L., Huxham, A., Smertenko, A., Van, P. H., Ammendola, S., Ricca, E., and Cutting, A. S. (2000) Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl. Environ. Microbiol. 66, 5241-5247.
  11. Holzapfel, W. H., Geisen, R., and Schillinger, U. (1993) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24, 343-362.
  12. Ibrahim, S. A. and Bezkorovainy, A. (1993) Survival of bifidobacteria in the presence of bile salts. J. Sci. Food Agric. 65, 351-354.
  13. Jun, K. D., Lee, K. H., Kim, W. S., and Paik, H. D. (2000) Microbiological identification of medical probiotic Bispan strain. Kor. J. Appl. Microbiol. Biotechnol. 28, 124-127.
  14. Kanno, S., Shouji, A., Tomizawa, A., Hiura, T., Osanai, Y., Ujibe, M., Obara, Y., Nakahata, N., and Ishikawa, M. (2006) Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sci. 78, 673-681. https://doi.org/10.1016/j.lfs.2005.04.051
  15. Karpuzoglu, E. and Ahmed, S. A. (2006) Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 15, 177-186. https://doi.org/10.1016/j.niox.2006.03.009
  16. Kim, S. J. (2005) Potential probiotic properties of lactic acid bacteria isolated from Kimchi. Food Sci. Biotechnol. 14, 547-550.
  17. Kimura, K., McCartney, A. L., McConnel, M. A., and Tannock, G. W. (1997) Analysis of fecal population of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to predominant strains. Appl. Environ. Microbiol. 63, 3394-3398.
  18. Klein, G. (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int. J. Food Microbiol. 88, 123-131. https://doi.org/10.1016/S0168-1605(03)00175-2
  19. Kobayashi, Y., Tohyama, K., and Terashima, T. (1974) Tolerance of the multiple antibiotic resistant strains, L. casei PSR 3002, to artificial digestive fluids. Jpn. J. Microbiol. 29, 691-697.
  20. Lee, S. B. and Choi, S. H. (2006) Isolation and identification of probiotic Lactobacillus isolates for calf meal supplements. Korean J. Food Sci. Ani. Resour. 26, 106-112.
  21. Liao, J. K., Shin, W. S., Lee, W. Y., and Clark, S. L. (1995) Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J. Biol. Chem. 270, 319-324. https://doi.org/10.1074/jbc.270.1.319
  22. Lim, S. J., Jang, S. S., and Kang, D. K. (2007) Probiotic properties of Lactobacillus salivarius CPM-7 isolated from chicken feces. Kor. J. Microbiol. Biotechnol. 35, 98-103.
  23. Mainville, I., Arcand, Y., and Farnworth, E. R. (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 99, 287-296. https://doi.org/10.1016/j.ijfoodmicro.2004.08.020
  24. Marin, J. and Rodriguez-Martinez, M. A. (1997) Role of vascular nitric oxide in physiological and pathological conditions. Pharmacol. Ther. 75, 111-134. https://doi.org/10.1016/S0163-7258(97)00051-X
  25. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F., and Wahl, S. M. (1993) Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  26. Muriuki, F. K., Ogara, W. O., Njeruh, F. M., and Mitema, E. S. (2001) Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya. J. Vet. Sci. 2, 97-101.
  27. Oleszak, E. L., Katsetos, C. D., Kuzmak, J., and Varadhachary, A. (1997) Inducible nitric oxide synthase in Theiler's murine encephalomyelitis virus infection. J. Virol. 71, 3228-3235.
  28. Park, H. S., Lee, J. H., and Uhm, T. B. (1999) Probiotic properties of Lactobacillus salivarius isolated from piglet intestines. J. Korean Soc. Food Sci. Nutr. 28, 830-836.
  29. Pascual, M., Hugas, M., Badiola, J. I., Monfort, J. M., and Garriga, M. (1999) Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65, 4981-4986.
  30. Pool-Zobel, B. L., Neudecker, C., Domizlaff, I., Ji, S., Schillinger, U., Rumney, C., Moretti, M., Vilarini, I., Scassellati-Sforzolini, R., and Rowland, I. (1996) Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26, 365-380. https://doi.org/10.1080/01635589609514492
  31. Reddy, N. R., Roth, S. M., Eigel, W. N., and Pierson, M. D. (1998) Foods and food ingredients for prevention of diarrhoea diseases in children in developing countries. J. Food Prot. 51, 66-75.
  32. Sanders, M. E. (2003) Probiotics: Considerations for human health. Nutr. Rev. 61, 91-99. https://doi.org/10.1301/nr.2003.marr.91-99
  33. Shanahan, F. (2004) Probiotics in inflammatory bowel disease-therapeutic rationale and role. Adv. Drug Deliver Rev. 56, 809-818. https://doi.org/10.1016/j.addr.2003.11.003
  34. Shin, M. S., Kim, H. M., Kim, G. T., Huh, C. S., Bae, H. S., and Back, Y. J. (1999) Selection and characteristics of Lactobacillus acidophilus isolated from Korean feces. Kor. J. Food Sci. Technol. 31, 495-501.
  35. Vinderola, C. G. and Reinheimer, J. A. (2003) Lactic acid starter and probiotic bacteria: a comparative "in vitro" study of probiotic characteristics and biological barrier resistance. Food Res. Int. 36, 895-904. https://doi.org/10.1016/S0963-9969(03)00098-X
  36. Vizoso Pinto, M. G., Franz, C. M. A. P., Schillinger, U., and Holzapfel, W. H. (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109, 205-214. https://doi.org/10.1016/j.ijfoodmicro.2006.01.029
  37. Weisz, A., Cicatiello, L., and Esumi, H. (1996) Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215.
  38. Wierup, M. (2001) The experience of reducing antibiotics used in animal production in the Nordic countries. Int. J. Antimicrob. Ag. 18, 287-290. https://doi.org/10.1016/S0924-8579(01)00380-6
  39. Xanthopoulos, V., Litopoulou-Tzanetaki, E., and Tzanetakis, N. (2000) Characterization of Lactobacillus isolates from infant faeces as dietary adjuncts. Food Microbiol. 17, 205-215. https://doi.org/10.1006/fmic.1999.0300
  40. Zhou, J. S., Pillidge, C. J., Gopal, P. K., and Gill, H. S. (2005) Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int. J. Food Microbiol. 98, 211-217. https://doi.org/10.1016/j.ijfoodmicro.2004.05.011

Cited by

  1. Screening and Characterization of Lactic Acid Bacteria Strains with Anti-inflammatory Activities through in vitro and Caenorhabditis elegans Model Testing vol.35, pp.1, 2015, https://doi.org/10.5851/kosfa.2015.35.1.91
  2. PA40 as a potential probiotic for feed additives vol.89, pp.10, 2018, https://doi.org/10.1111/asj.13047