DOI QR코드

DOI QR Code

Enhancement of Ginsenoside Rg1 and Rg5 Contents in an Extract of Wood-cultivated Ginseng by Lactobacillus plantarum

Lactobacillus plantarum을 이용한 산양삼 추출물의 진세노사이드 Rg1 및 Rg5의 함량 증대

  • Kwon, Hun-Joo (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Cho, Yun-Ji (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Kim, Myoung-Dong (Department of Food Science and Biotechnology, Kangwon National University)
  • 권훈주 (강원대학교식품생명공학과) ;
  • 조윤지 (강원대학교식품생명공학과) ;
  • 김명동 (강원대학교식품생명공학과)
  • Received : 2017.11.07
  • Accepted : 2017.11.30
  • Published : 2017.12.28

Abstract

Twelve lactic acid bacteria harboring ${\alpha}$-rhamnosidase (EC 3.2.1.40) activity were isolated from traditional Korean foods. The 6 strains (Weissella confuse [n = 1], Lactobacillus pentosus [n = 1], and Lactobacillus plantarum [n = 4]) with the highest rhamnosidase activity were selected for bioconversion of an extract of wood-cultivated ginseng. The L. plantarum MBE/L2990 strain increased ginsenoside content (0.58 mg for Rg1 and 0.24 mg for Rg5) and showed higher bioconversion activity than the control strain L. plantarum KCTC21004 (56% and 42% increase for Rg1 and Rg5, respectively). L. plantarum MBE/L2990 was deposited at the Korean Collection for Type Cultures as Lactobacillus plantarum KCTC18529P.

발효식품으로부터 분리한 젖산균 중 ${\alpha}$-rhamnosidase 효소활성을 보유한 젖산균 12점을 선별하였다. 효소활성이 우수한 Weissella confuse 1점, L. pentosus 1점과 효소활성이 우수하였던 4점의 L. plantarum 균주를 사용하여 진세노사이드 Rb1과 Re를 Rg1, Rg5로 각각 생물전환하였다. L. plantarum MBE/L2990 균주를 사용한 생물전환반응에서 Rg1과 Rg5의 함량이 각각 0.58 mg, 0.24 mg 가량 증가하였으며, 대조구로 사용한 L. plantarum KCTC21004 균주에 비해 약 56% 및 42% 우수한 생물전환 효율이었다. L. plantarum MBE/L2990 균주는 한국미생물자원센터에 KCTC18529P로 기탁하였다.

Keywords

References

  1. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, et al. 2010. Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J. Food Preserv. 17: 727-732.
  2. Lim W, Mudge KW, Weston LA. 2007. Utilization of RAPD markers to assess genetic diversity of wild populations of north American ginseng (Panax quinquefolium). Planta Med. 73: 71-76.
  3. Lui JHC, Staba EJ. 1980. The ginsenosides of various ginseng plants and selected products. J. Nat. Prod. 43: 340-346. https://doi.org/10.1021/np50009a004
  4. Bhasvar SK, Singh S, Giri S, Jain MR, Santani DD. 2009. Effect of saponins from Helicteres isora on lipid and glucose metabolism regulating genes expression. J. Ethnopharmacol. 124: 426-433. https://doi.org/10.1016/j.jep.2009.05.041
  5. Hwang JT, Kim SH, Lee MS, Kim SH, Yang HJ, Kim MJ, et al. 2007. Anti-obesity effects of ginsenoside Rh2 are associated with the activation of AMPK signaling pathway in 3T3-L1 adipocyte. Biochem. Biophys. Res. Commun. 23: 262-266.
  6. Park JD. 1996. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C. A. Meyer). Korea J. Ginseng Sci. 20: 389-415.
  7. Huo YS. 1984. Anti-senility action of saponin in Panax ginseng fruit in 327 cases. Zhong Xi. Yi. Jie. He. Za. Zhi. 4: 593-596.
  8. Zhang SC, Jiang XL. 1981. The anti-stress effect of saponins extracted from Panax ginseng fruit and the hypophyseal adrenal system. Yao. Xue. Xue. Bao. 16: 860-863.
  9. Bae HM, Cho OS, Kim SJ, Im BO, Cho SH, Lee S, et al. 2012. Inhibitory effects of ginsenoside Re isolated from ginseng berry on histamine and cytokine release in human mast cells and human alveolar epithelial cells. J. Ginseng Res. 36: 369-374. https://doi.org/10.5142/jgr.2012.36.4.369
  10. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. 2007. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother. Pharmacol. 59: 589-601. https://doi.org/10.1007/s00280-006-0300-z
  11. Park JH, Lee YH, Kang KS, Lee SK, Kim SZ, Park JY, et al. 2004. The effects of ginsenoside Rb1 on the apoptosis and the production of nitric oxide in rat C6 glioma cells. Korean J. Patho. 38: 1-7.
  12. Cho WC, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. 2006. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin- induced diabetic rats. Eur. J. Pharmacol. 550: 173-179. https://doi.org/10.1016/j.ejphar.2006.08.056
  13. Liao B, Newmark H, Zhou R. 2002. Neuroprotective effects of ginseng total saponin and ginsenosides Rb1 and Rg1 on spinal cord neurons In vitro. Exp. Neurol. 173: 224-234. https://doi.org/10.1006/exnr.2001.7841
  14. Lee YY, Park JS, Jung JS, Kim DH, Kim HS. 2013. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Sci. 14: 9820-9833. https://doi.org/10.3390/ijms14059820
  15. Van LTH, Dat NT, Khoi NN, Park JH, Duc NM. 2015. Ginsenoside Rk1 and ginsenoside Rg5 from processed vietnamese ginseng (Panax vietnamesis). J. Med. Mat. 20: 149-155.
  16. Jin HS, Kim JB, Tun TJ, Lee KJ. 2008. Selection of Kimchi starters based on the microbial composition of Kimchi and their effects. J. Korean Soc. Food Sci. Nutr. 37: 671-675. https://doi.org/10.3746/jkfn.2008.37.5.671
  17. Ahn JE, Kim JK, Lee HR, Eom HJ, Han NS. 2012. Isolation and characterization of a bacteriocin-producing Lactobacillus sakei B16 from Kimchi. J. Korean Soc. Food Sci. Nutr. 41: 721-726. https://doi.org/10.3746/jkfn.2012.41.5.721
  18. Jang MH, Kim MD. 2010. ${\beta}$-glucosidase activity of lactic acid bacteria isolated from Kimchi. Food Eng. Prog. 14: 243-248.
  19. Jang MH, Kim MD. 2011. ${\beta}$-1,4-xylosidase activity of Leuconostoc lactic acid bacteria isolated from Kimchi. Korean J. Food Sci. Technol. 44: 169-175.
  20. Rhimi M, Aghajari N, Jaouadi B, Juy M, Boudebbouze S, Maguin E, et al. 2009. Exploring the acidotolerance of ${\beta}$-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion. Res. Microbiol. 160: 775-784. https://doi.org/10.1016/j.resmic.2009.09.004
  21. Kim CK. 2012. Ginseng sponins processing by using bio-conversion technology. J. Ginseng Res. 6: 3-13.
  22. Park CD, Jung HK, Park CH, Jung YS, Hong JH, Ko HS, et al. 2012. Isolation of citrus peel flavonoid bioconversion microorganism and inhibitory effect on oxidative damage in pancreatic beta cells. Korean Soc. Biotechnol. Bioeng. J. 27: 67-74.
  23. Yang MC, Kim DS, Jeong SW, Ma JY. 2011. Bioconversion constituents of galgeun-tang fermented by Lactobacillus plantarum. J. Korean J. Medicinal Crop. Sci. 19: 446-455. https://doi.org/10.7783/KJMCS.2011.19.6.446
  24. Shim KS, Park GG, Park YS. 2014. Bioconversion of puffed red ginseng extract using ${\beta}$-glucosidase-producing lactic acid bacteria. Food Eng. Prog. 18: 332-340. https://doi.org/10.13050/foodengprog.2014.18.4.332
  25. Jo MN, Jung EJ, Yoon HJ, Chang KH, Jee HS, Kim KT, et al. 2014. Bioconversion of ginsenoside Rb1 to the pharmaceutical ginsenoside Compound K using Aspergillus usamii KCTC6954. Korean J. Microbiol. Biotechnol. 42: 347-353. https://doi.org/10.4014/kjmb.1407.07010
  26. Lee KJ, Gu MJ, Roh JH, Jung PM, Ma JY. 2013. Quantitative analysis of bioconversion constituents of Insampeadock-san using various fermented bacteria. Yakhak Hoeji 57: 167-172.
  27. Yadav V, Yadav PK, Yadav S, Yadav KDS. 2010. ${\alpha}$-l-Rhamnosidase: A review. Process Biochem. 45: 1226-1235. https://doi.org/10.1016/j.procbio.2010.05.025
  28. Choi DH, Choi YH, Yeo SH, Kim MD. 2016. Isolation and characterization of Saccharomyces cerevisiae from nuruk for production of ethanol from maltose. Microbiol. Biotechnol. Lett. 44: 34-39. https://doi.org/10.4014/mbl.1510.10008
  29. Park EH, Kim MD. 2016. Antipathogenic activity of Lactobacillus plantarum isolated from pickled mulberry leaf. Microbiol. Biotechnol. Lett. 44: 163-170. https://doi.org/10.4014/mbl.1602.02004
  30. Wang Q, Hu C, Ke F, Huang S, Li Q. 2010. Characterization of a bacterial biocontrol strain 1404 and its efficacy in controlling postharvest citrus anthracnose. Wei. Sheng. Wu. Xue. Bao. 50: 1208-1217.
  31. Hong JT, Nam YM, Kim SJ, Ko SK. 2016. The change of ginsenoside composition in ginseng berry extract by the ultrasonication process. Yakhak Hoeji 60: 58-63. https://doi.org/10.17480/psk.2016.60.2.58
  32. Sim HS, Kim MD. 2015. Characteristics of lactic acid production by Lactobacillus buchneri isolated from Kimchi. Microbiol. Biotechnol. Lett. 43: 286-290. https://doi.org/10.4014/mbl.1506.06006
  33. Shin KC, Choi HY, Seo MJ, Oh DK. 2017. Improved conversion of ginsenoside Rb1 to compound K by semi-rational design of Sulfolobus solfataricus ${\beta}$-glycosidase. AMB Express 7: 186. https://doi.org/10.1186/s13568-017-0487-x
  34. Upadhyaya J, Kim MJ, Kim YH, Ko SR, Park HW, Kim MK. 2016. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea. J. Ginseng Res. 40: 105-112. https://doi.org/10.1016/j.jgr.2015.05.007
  35. Liu CY, Zhou RX, Sun CK, Jin YH, Yu HS, Zhang TY, et al. 2015. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848. J. Ginseng Res. 39: 221-229. https://doi.org/10.1016/j.jgr.2014.12.003

Cited by

  1. 일본잎갈나무림과 침활혼효림의 입지환경이 산양삼 종묘의 초기 생육에 미치는 영향 vol.109, pp.3, 2017, https://doi.org/10.14578/jkfs.2020.109.3.313
  2. Comparison of ginsenoside (Rg1, Rb1) content and radical-scavenging activities of wild-simulated ginseng extract with respect to the solvent vol.28, pp.2, 2017, https://doi.org/10.11002/kjfp.2021.28.2.261