DOI QR코드

DOI QR Code

Molecular Typing of Leuconostoc citreum Strains Isolated from Korean Fermented Foods Using a Random Amplified Polymorphic DNA Marker

  • Kaur, Jasmine (Department of Food Science and Biotechnology, Gachon University) ;
  • Lee, Sulhee (Department of Food Science and Biotechnology, Gachon University) ;
  • Sharma, Anshul (Department of Food Science and Biotechnology, Gachon University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University)
  • Received : 2017.04.26
  • Accepted : 2017.05.16
  • Published : 2017.05.31

Abstract

For preliminary molecular typing, PCR-based fingerprinting using random amplified polymorphic DNA (RAPD) is the method of choice. In this study, 14 bacterial strains were isolated from different Korean food sources, identified using 16S rRNA gene sequencing, and characterized through RAPD-PCR. Two PCR primers (239 and KAY3) generated a total of 130 RAPD bands, 14 distinct PCR profiles, 10 polymorphic bands, one monomorphic band, and four unique bands. Dendrogram-based analysis with primer 239 showed that all 14 strains could be divided into seven clades out of which clade VII had the maximum of seven. In contrast, dendrogram analysis with the primer KAY3 divided the 14 L. citreum strains into four clades out of which clade IV consisted of a maximum of 10 strains out of 14. This research identified and characterized bacterial populations associated with different Korean foods. The proposed RAPD-PCR method, based on sequence amplification, could easily identify and discriminate the lactic acid bacteria species at the strain-specific level and could be used as a highly reliable genomic fingerprinting tool.

Keywords

Acknowledgement

Supported by : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)

References

  1. Alegria A, Delgado S, Florez AB, Mayo B. 2013. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 93: 657-673. https://doi.org/10.1007/s13594-013-0128-3
  2. Aznar R, Alarcon B. 2002. On the specificity of PCR detection of Listeria monocytogenes in food: a comparison of published primers. Syst. Appl. Microbiol. 25:109-119. https://doi.org/10.1078/0723-2020-00079
  3. Bjorkroth J, Holzapfel W. 2006. Genera Leuconostoc, Oenococcus and Weissella. In: The Prokaryotes: A Handbook on the Biology of Bacteria: Firmicutes, Cyanobacteria. Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (eds). Springer, New York, NY, USA, pp. 267-319.
  4. Cardamone L, Quiberoni A, Mercanti DJ, Fornasari ME, Reinheimer JA, Guglielmotti DM. 2011. Adventitious dairy Leuconostoc strains with interesting technological and biological properties useful for adjunct starters. Dairy Sci. Technol. 91: 457-470. https://doi.org/10.1007/s13594-011-0022-9
  5. Carr FJ, Chill D, Maida N. 2002. The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 28: 281-370. https://doi.org/10.1080/1040-840291046759
  6. Cibik R, Lepage E, Tailliez P. 2000. Molecular diversity of Leuconostoc mesenteroides and Leuconostoc citreum isolated from traditional French cheeses as revealed by RAPD fingerprinting, 16S rDNA sequencing and 16S rDNA fragment amplification. Syst. Appl. Microbiol. 23:267-278. https://doi.org/10.1016/S0723-2020(00)80014-4
  7. Cocconcelli PS, Parisi MG, Senini L, Bottazzi V. 1997. Use of RAPD and 16S rDNA sequencing for the study of Lactobacillus population dynamics in natural whey culture. Lett. Appl. Microbiol. 25: 8-12. https://doi.org/10.1046/j.1472-765X.1997.00061.x
  8. Corroler D, Mangin I, Desmasures N, Gueguen M. 1998. An ecological study of lactococci isolated from raw milk in the Camembert cheese registered designation of origin area. Appl. Environ. Microbiol. 64: 4729-4735. https://doi.org/10.1128/AEM.64.12.4729-4735.1998
  9. De Angelis M, Corsetti A, Tosti N, Rossi J, Corbo MR, Gobbetti M. 2001. Characterization of non-starter lactic acid bacteria from Italian ewe cheeses based on phenotypic, genotypic, and cell wall protein analyses. Appl. Environ. Microbiol. 67: 2011-2020. https://doi.org/10.1128/AEM.67.5.2011-2020.2001
  10. Drake M, Small CL, Spence KD, Swanson BG. 1996 Rapid detection and identification of Lactobacillus spp. in dairy products by using the polymerase chain reaction. J. Food Prot. 59: 1031-1036. https://doi.org/10.4315/0362-028X-59.10.1031
  11. Fortina MG, Ricci G, Acquti A, Zeppa G, Gandini A, Manachini PL. 2003. Genetic characterization of some lactic acid bacteria occurring in an artisanal protected denomination origin (PDO) Italian Cheese, the Toma Piemontese. Food Microbiol. 20: 397-404. https://doi.org/10.1016/S0740-0020(02)00149-1
  12. Gevers D, Huys G, Swings J. 2001. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205: 31-36. https://doi.org/10.1111/j.1574-6968.2001.tb10921.x
  13. Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365S-373S. https://doi.org/10.1093/ajcn/73.2.365s
  14. Kandler O, Weiss N. 1986. Regular, non-sporing gram-positive rods. In: Bergey's Manual of Systematic Bacteriology. Sneath PHA, Mair NS, Sharpe ME, Holt JG. (eds.). Williams and Wilkins Co., Baltimore, MD, USA. pp. 1209-1234.
  15. Kim M, Chun J. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96. https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  16. Kot W, Neve H, Heller KJ, Vogensen FK. 2014. Bacteriophages of Leuconostoc, Oenococcus, and Weissella. Front Microbiol. 5: 186.
  17. Kulwichit W, Nilgate S, Chatsuwan T, Krajiw S, Unhasuta C, Chongthaleong A. 2007. Accuracies of Leuconostoc phenotypic identification: a comparison of API systems and conventional phenotypic assays. BMC Infect. Dis. 7: 69. https://doi.org/10.1186/1471-2334-7-69
  18. Mora D, Fortina MG, Parini C, Daffonchio D, Manachini PL. 2000. Genomic subpopulations within the species Pediococcus acidilaclici detected by multi locus typing analysis: Relationships between pediocin AcH/PA_1 producing and nonproducing strains. Microbiology 146: 2027-2038. https://doi.org/10.1099/00221287-146-8-2027
  19. Morea M, Baruzzi F, Cocconcelli PS. 1999. Molecular and physiological characterization of dominant populations in traditional Mozzarella cheese processing. J. Appl. Microbiol. 87: 574-582. https://doi.org/10.1046/j.1365-2672.1999.00855.x
  20. Moschetti G, Blaiotta G, Villani F, Coppola S, Parente E. 2001. Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Entercoccus faecium from randomly amplified polymorphic DNA patterns. Appl. Environ. Microbiol. 67: 2156-2166. https://doi.org/10.1128/AEM.67.5.2156-2166.2001
  21. Nieto-Arribas P, Sesena S, Poveda JM, Palop L, Cabezas L. 2010. Genotypic and technological characterization of Leuconostoc isolates to be used as adjunct starters in Manchego cheese manufacture. Food Microbiol. 27: 85-93. https://doi.org/10.1016/j.fm.2009.08.006
  22. Nigatu A, Ahrne S, Molin G. 1998. Randomly amplified polymorphic DNA for discrimination of Pediococcus pentosaceus and Ped. acidilactici and rapid grouping of Pediococcus isolates. Lett. Appl. Microbiol. 26: 412-416. https://doi.org/10.1046/j.1472-765X.1998.00360.x
  23. Perez G, Cardell E, Zarate V. 2002. Random amplified polymorphic DNA analysis for differentiation of Leuconostoc mesenteroides subspecies isolated from Tenerife cheese. Lett. Appl. Microbiol. 34: 82-85. https://doi.org/10.1046/j.1472-765x.2002.01050.x
  24. Pozo-Bayon MA, Pardo I, Ferrer S, Moreno-Arribas MV. 2009. Molecular approaches for the identification and characterization of oenological lactic acid bacteria. Afric. J. Biotechnol. 8: 3995-4001.
  25. Quiberoni USA, Tailliez A, Quenee P, Suarez V, Reinheimer J. 1998. Genetic (RAPD-PCR) and technological diversities among wild Lactobacillus helveticus strains. J. Appl. Microbiol. 85: 591-596. https://doi.org/10.1046/j.1365-2672.1998.853566.x
  26. Ramos JR, Telles MPC, Diniz-Filho JAF, Soares TN, Melo DB, Oliveira G. 2008. Optimizing reproducibility evaluation for random amplified polymorphic DNA markers. Genet. Mol. Res. 7: 1384-1391. https://doi.org/10.4238/vol7-4gmr520
  27. Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, Jarvinen A. 2004. Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. Rhamnosus GG. Clin. Infect. Dis. 38: 62-69. https://doi.org/10.1086/380455
  28. Sanchez JI, Martinez B, Rodriguez A. 2005. Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations. Int. J. Food Microbiol. 105: 377-387. https://doi.org/10.1016/j.ijfoodmicro.2005.04.025
  29. Son YJ, Ryu AJ, Ling L, Han NS, Jeong KJ. 2016. Development of a high-copy plasmid for enhanced production of recombinant proteins in Leuconostoc citreum. Microb. Cell Fact. 15: 12. https://doi.org/10.1186/s12934-015-0400-8
  30. Suzzi G, Caruso M, Gardini F, Lombardi A, Vannini L, Guerzoni ME, Andrighetto C, Lanorte MT. 2000. A survey of the Enterococci isolated from an artisanal Italian goat's cheese (semicotto caprino). J. Appl. Microbiol. 89: 267-274. https://doi.org/10.1046/j.1365-2672.2000.01120.x
  31. Tafvizi1 F, Ebrahimi MT. 2015. Application of repetitive extragenic palindromic elements based on PCR in detection of genetic relationship of lactic acid bacteria species isolated from traditional fermented food products. J. Agr. Sci. Tech. 17: 87-98.
  32. Tailliez P, Tremblay J, Ehrlich SD, Chopin A. 1998. Molecular diversity and culture development for improving the flavor of Proosdij-type cheese. Int. Dairy J. 13: 159-168.
  33. Tanigawa K, Watanabe K. 2011. Multilocus sequence typing reveals a novel sub speciation of Lactobacillus delbrueckii. Microbiology 157: 727-738. https://doi.org/10.1099/mic.0.043240-0
  34. Vihavainen EJ, Bjorkroth KJ. 2009. Diversity of Leuconostoc gasicomitatum associated with meat spoilage. Int. J. Food Microbiol. 136: 32-36. https://doi.org/10.1016/j.ijfoodmicro.2009.09.010
  35. Villani F, Moschetti G, Blaiotta G, Coppola S. 1997. Characterization of strains of Leuconostoc mesenteroides by analysis of soluble whole-cell protein pattern, DNA fingerprinting and restriction of ribosomal DNA. J. Appl. Microbiol. 82: 578-588. https://doi.org/10.1111/j.1365-2672.1997.tb03588.x
  36. Woese CR. 1987. Bacterial evolution. Microbiol. Rev. 51: 221-271.
  37. Zhang ZG, Ye ZQ, Yu L, Shi P. 2011. Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol. Biol. 11: 1-12. https://doi.org/10.1186/1471-2148-11-1

Cited by

  1. Analysis of Leuconostoc citreum strains using multilocus sequence typing vol.27, pp.6, 2018, https://doi.org/10.1007/s10068-018-0417-y