Sehyoung Kim;Jaehyeong Park;Hansol Lee;Juyoung Kang
Journal of Intelligence and Information Systems
/
v.29
no.3
/
pp.249-265
/
2023
Recently, the satellite industry has been paying attention to the private-led 'New Space' paradigm, which is a departure from the traditional government-led industry. The space industry, which is considered to be the next food industry, is still receiving relatively little attention in Korea compared to the global market. Therefore, the purpose of this study is to explore future signals that can help determine the market entry strategies of private companies in the domestic satellite industry. To this end, this study utilizes the theoretical background of future signal theory and the Keyword Portfolio Map method to analyze keyword potential in patent document data based on keyword growth rate and keyword occurrence frequency. In addition, news data was collected to categorize future signals into first symptom and early information, respectively. This is utilized as an interpretive indicator of how the keywords reveal their actual potential outside of patent documents. This study describes the process of data collection and analysis to explore future signals and traces the evolution of each keyword in the collected documents from a weak signal to a strong signal by specifically visualizing how it can be used through the visualization of keyword maps. The process of this research can contribute to the methodological contribution and expansion of the scope of existing research on future signals, and the results can contribute to the establishment of new industry planning and research directions in the satellite industry.
Journal of Information Technology and Architecture
/
v.11
no.1
/
pp.63-73
/
2014
As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.
Journal of the Korea Fashion and Costume Design Association
/
v.25
no.2
/
pp.111-122
/
2023
This study aims to collect Big Data related to DIY clothing, analyze the results on a year-by-year basis, understand consumers' perceptions, the status, and reality of DIY clothing. The reference period for the evaluation of DIY clothing trends was set from 2012 to 2022. The data in this study was collected and analyzed using Textom, a Big Data solution program certified as a Good Software by the Telecommunications Technology Association (TTA). For the analysis of fabric-related DIY products, the keyword was set to "DIY clothing", and for data cleansing following collection, the "Espresso K" module was employed. Also, via data collection on a year-by-year basis, a total of 11 lists were generated and the collected data was analyzed by period. The following are the findings of this study's data collection on DIY clothing. The total number of keywords collected over a period of ten years on search engines "Naver" and "Google" between January 1, 2012 and December 31, 2022 was 16,315, and data trends by period indicate a continuous upward trend. In addition, a keyword analysis was conducted to analyze TF-IDF (Term Frequency-Inverse Document Frequency), a statistical measure that reflects the importance of a word within data, and the relationship with N-gram, an analysis of the correlation concerning the relationship between words. Using these results, it was possible to evaluate the popularity and growing tendency of DIY clothing products in conjunction with the evolving social environment, as well as the desire to explore DIY trends among consumers. Therefore, this study is valuable in that it provides preliminary data for DIY clothing research by analyzing the status and reality of DIY products, and furthermore, contributes to the development and production of DIY clothing.
International Journal of Advanced Culture Technology
/
v.10
no.4
/
pp.230-237
/
2022
The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.
Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.
The aim of this study was to analyze dieting practices and tendencies in 2016 using big data. The keywords related to diet were collected from the portal site Naver and analyzed through simple frequency, N-gram, keyword network, and analysis of seasonality. The results showed that exercise had the highest frequency in simple frequency analysis. However, diet menu appeared most frequently in N-gram analysis. In addition, analysis of seasonality showed that the interest of subjects in diet increased steadily from February to July and peaked in October 2016. The monthly frequency of the keyword highfat diet was highest in October, because that showed the 'Low Carbohydrate High Fat' TV program. Although diet showed a certain pattern on a yearly basis, the emergence of new trendy diets in mass media also affects the pattern of diet. Therefore, it is considered that continuous monitoring and analysis of diet is needed rather than periodic monitoring.
This study aims to investigate the research trend of elementary environmental education. Thus, author keywords were extracted from a total of 197 academic these related to elementary environmental education during two different periods when detailed goals were applied to the 2007 and 2009 revised curriculums respectively, and then this study analyzed the network of author keywords. The results of this study can be summarized as below. Firstly, as a result of analyzing the frequency of author keywords from academic theses related to elementary environmental education, this study discovered 369 author keywords from the period when detailed goals were applied to 2009 revised curriculum. Out of them, it was found that the keyword, 'climate change education', showed the highest frequency, followed by 'environmental literacy' and 'environmental perception', except such central keywords as 'environmental education' and 'elementary school student'. From the period when detailed goals were applied to the 2007 revised curriculum, a total of 394 author keywords were discovered, and the keyword, 'environmental literacy', showed the highest frequency, followed by 'environmental perception' and 'ESD (education for sustainable development)'. Secondly, as a result of analyzing the network of author keywords, this study found out that in the total number of network connections, average connection degree, density and clique, the period when detailed goals were applied to the 2007 revised curriculum was somewhat higher than the period when detailed goals were applied to the 2009 revised curriculum. As a result of analyzing the centrality of author keywords, this study found out that during both the periods, 'environmental perception' and 'environmental literacy' were high in degree centrality and betweenness centrality, except such central keywords as 'environmental education' and 'elementary school student'. As a result of analyzing the components of author keywords as sub-networks, this study discovered 9 components from the period when detailed goals were applied to the 2009 revised curriculum and 6 components from the period when detailed goals were applied to the 2007 revised curriculum. During both the periods, the largest component was composed of keywords high in degree centrality and betweenness centrality.
Extracting keywords representing documents is very important because it can be used for automated services such as document search, classification, recommendation system as well as quickly transmitting document information. However, when extracting keywords based on the frequency of words appearing in a web site documents and graph algorithms based on the co-occurrence of words, the problem of containing various words that are not related to the topic potentially in the web page structure, There is a difficulty in extracting the semantic keyword due to the limit of the performance of the Korean tokenizer. In this paper, we propose a method to select candidate keywords based on semantic similarity, and solve the problem that semantic keyword can not be extracted and the accuracy of Korean tokenizer analysis is poor. Finally, we use the technique of extracting final semantic keywords through filtering process to remove inconsistent keywords. Experimental results through real web pages of small business show that the performance of the proposed method is improved by 34.52% over the statistical similarity based keyword selection technique. Therefore, it is confirmed that the performance of extracting keywords from documents is improved by considering semantic similarity between words and removing inconsistent keywords.
The objective of this study is to explore future issues that Chinese users, who have the highest mobile payment service usage rate in the world, will be most interested in. For this purpose, after collecting text data from a Chinese SNS site, it classifies major keywords into 4 types of future signals by using Keyword Emergence Map (KEM) and Keyword Issue Map (KIM). Furthermore, to understand the four types of signals in detail, it performs the qualitative analysis on text related to each signal keyword. As a result, it finds that the strong signal, which is rapidly growing in keyword appearance frequency during this research period, includes the keywords related to the daily life of Chinese people, such as buses, subways, and household account books. Additionally, it find that the signal that appears frequently now, but with a low increase rate, includes various services that can replace cash payment, such as hongbao (cash payment) and bank cards. The weak signal and latent signal, which appear less often than other two signals, includes the keywords related to promotion events or changes in service regulations. Its result shows that the mobile payment services greatly have changed user's daily life beyond providing convenience. Furthermore, it shows that, in the Chinese market, in which card payment is not common, the mobile payment services have the great potential to completely replace cash payment.
The purpose of study was to analyze the trends of 2005 to 2018 revised 'convergence technology research' through text network analysis using NetMiner4.0 program. Data analysis was conducted by using keyword analysis, centrality analysis of 653 authors' keyword from 177 journals. The results of the study are as follows. First, Research on Converging Technology has been studied steadily over the past 13 years in Department of Industry Convergence. Second, the results of the search term frequency analysis show that the 'convergence technology', 'technology convergence', 'convergence', 'design', 'convergence education', 'STEAM', 'convergence research' were used as the main keywords of convergence technology research. Third, Community analysis results show that five communities have been classified five categories according to the characteristics of the search terms 'only IT', 'Cultural industry utilizing Convergence contents', 'Technology innovation and research analysis' And patent development'. Based on these results, we proposed the future directions of convergence technology research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.