• Title/Summary/Keyword: key block

Search Result 695, Processing Time 0.026 seconds

APPLICATION OF $(\upsilon,\kappa,\lambda)$-CONFIGURATION TO GENERATION OF A CONFERENCE KEY

  • Chung, Il-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.531-537
    • /
    • 2001
  • In order for all participants at video conference to communicate mutually, the conference key should be necessary. In this paper, we present the communication protocol that generates a conference key efficiently based on $(\upsilon,\kappa,\lambda)$-configuration, one class of block designs, which minimizes message transmission overhead needed for this key. Especially, in the case of ${\lambda}=1$, the protocol requires only $O(\sqrt[v]{v})$ messages, where v is the number of participants.

A Novel Fast Open-loop Phase Locking Scheme Based on Synchronous Reference Frame for Three-phase Non-ideal Power Grids

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1513-1525
    • /
    • 2016
  • Rapid and accurate phase synchronization is critical for the reliable control of grid-tied inverters. However, the commonly used software phase-locked loop methods do not always satisfy the need for high-speed and accurate phase synchronization under severe grid imbalance conditions. To address this problem, this study develops a novel open-loop phase locking scheme based on a synchronous reference frame. The proposed scheme is characterized by remarkable response speed, high accuracy, and easy implementation. It comprises three functional cascaded blocks: fast orthogonal signal generation block, fast fundamental-frequency positive sequence component construction block, and fast phase calculation block. The developed virtual orthogonal signal generation method in the first block, which is characterized by noise immunity and high accuracy, can effectively avoid approximation errors and noise amplification in a wide range of sampling frequencies. In the second block, which is the foundation for achieving fast phase synchronization within 3 ms, the fundamental-frequency positive sequence components of unsymmetrical grid voltages can be achieved with the developed orthogonal signal construction strategy and the symmetrical component method. The real-time grid phase can be consequently obtained in the third block, which is free from self-tuning closed-loop control and thus improves the dynamic performance of the proposed scheme. The proposed scheme is adaptive to severe unsymmetrical grid voltages with sudden changes in magnitude, phase, and/or frequency. Moreover, this scheme is able to eliminate phase errors induced by harmonics and random noise. The validity and utility of the proposed scheme are verified by the experimental results.

Design of Encryption/Decryption Core for Block Cipher Camellia (Camellia 블록 암호의 암·복호화기 코어 설계)

  • Sonh, Seungil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.786-792
    • /
    • 2016
  • Camellia was jointly developed by Nippon Telegraph and Telephone Corporation and Mitsubishi Electric Corporation in 2000. Camellia specifies the 128-bit message block size and 128-, 192-, and 256-bit key sizes. In this paper, a modified round operation block which unifies a register setting for key schedule and a conventional round operation block is proposed. 16 ROMs needed for key generation and round operation are implemented using only 4 dual-port ROMs. Due to the use of a message buffer, encryption/decryption can be executed without a waiting time immediately after KA and KB are calculated. The suggested block cipher Camellia algorithm is designed using Verilog-HDL, implemented on Virtex4 device and operates at 184.898MHz. The designed cryptographic core has a maximum throughput of 1.183Gbps in 128-bit key mode and that of 876.5Mbps in 192 and 256-bit key modes. The cryptographic core of this paper is applicable to security module of the areas such as smart card, internet banking, e-commerce and satellite broadcasting.

Identity-Based Key Agreement Protocol Employing a Symmetric Balanced Incomplete Block Design

  • Shen, Jian;Moh, Sangman;Chung, Ilyong
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.682-691
    • /
    • 2012
  • Key agreement protocol is a fundamental protocol in cryptography whereby two or more participants can agree on a common conference key in order to communicate securely among themselves. In this situation, the participants can securely send and receive messages with each other. An adversary not having access to the conference key will not be able to decrypt the messages. In this paper, we propose a novel identity-based authenticated multi user key agreement protocol employing a symmetric balanced incomplete block design. Our protocol is built on elliptic curve cryptography and takes advantage of a kind of bilinear map called Weil pairing. The protocol presented can provide an identification (ID)-based authentication service and resist different key attacks. Furthermore, our protocol is efficient and needs only two rounds for generating a common conference key. It is worth noting that the communication cost for generating a conference key in our protocol is only O($\sqrt{n}$) and the computation cost is only O($nm^2$), where $n$ implies the number of participants and m denotes the extension degree of the finite field $F_{p^m}$. In addition, in order to resist the different key attack from malicious participants, our protocol can be further extended to provide the fault tolerant property.

A tamper resistance software mechanism using MAC function and dynamic link key (MAC함수와 동적 링크키를 이용한 소프트웨어 변조 방지 기법)

  • Park, Jae-Hong;Kim, Sung-Hoon;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • In order to prevent tampering and reverse engineering of executive code, this paper propose a new tamper resistant software mechanism. This paper presents a cryptographic MAC function and a relationship which has its security level derived by the importance of code block instead of by merely getting the encryption and decryption key from the previous block. In this paper, we propose a cryptographic MAC function which generates a dynamic MAC function key instead of the hash function as written in many other papers. In addition, we also propose a relationships having high, medium and low security levels. If any block is determined to have a high security level then that block will be encrypted by the key generated by the related medium security level block. The low security block will be untouched due to efficiency considerations. The MAC function having this dynamic key and block relationship will make analyzing executive code more difficult.

A Design of Crypto-processor for Lightweight Block Cipher LEA (경량 블록암호 LEA용 암호/복호 프로세서 설계)

  • Sung, Mi-ji;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.401-403
    • /
    • 2015
  • This paper describes an efficient hardware design of 128-bit block cipher algorithm LEA(lightweight encryption algorithm). In order to achieve area-efficient and low-power implementation, round block and key scheduler block are optimized to share hardware resources for encryption and decryption. The key scheduler register is modified to reduce clock cycles required for key scheduling, which results in improved encryption/decryption performance. FPGA synthesis results of the LEA processor show that it has 2,364 slices, and the estimated performance for the master key of 128/192/256-bit at 113 MHz clock frequency is about 181/162/109 Mbps, respectively.

  • PDF

A Study on the design of mixed block crypto-system using subordinate relationship of plaintext and key (평문과 키의 종속관계를 이용한 혼합형 블록 암호시스템 설계에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.143-151
    • /
    • 2011
  • Plaintext and key are independent in the existing block cipher. Also, encryption/decryption is performed by using structural features. Therefore, the external environment of suggested mixed cryptographic algorithm is identical with the existing ones, but internally, features of the existing block cipher were meant to be removed by making plaintext and key into dependent functions. Also, to decrease the loads on the authentication process, authentication add-on with dependent characteristic was included to increase the use of symmetric cryptographic algorithm. Through the simulation where the proposed cryptosystem was implemented in the chip level, we show that our system using the shorter key length than the length of the plaintext is two times faster than the existing systems.

Three-dimensional cone beam computed tomography analysis of temporomandibular joint response to the Twin-block functional appliance

  • Jiang, Yuan-yuan;Sun, Lian;Wang, Hua;Zhao, Chun-yang;Zhang, Wei-Bing
    • The korean journal of orthodontics
    • /
    • v.50 no.2
    • /
    • pp.86-97
    • /
    • 2020
  • Objective: To propose a three-dimensional (3D) method for evaluating temporomandibular joint (TMJ) changes during Twin-block treatment. Methods: Seventeen patients with Class II division 1 malocclusion treated using Twin-block and nine untreated patients with a similar malocclusion were included in this research. We collected their cone beam computed tomography (CBCT) data from before and 8 months after treatment. Segmentations were constructed using ITK-SNAP. Condylar volume and superficial area were measured using 3D Slicer. The 3D landmarks were identified on CBCT images by using Dolphin software to assess the condylar positional relationship. 3D models of the mandible and glenoid fossa of the patients were constructed and registered via voxel-based superimposition using 3D Slicer. Thereafter, skeletal changes could be visualized using 3DMeshMetric in any direction of the superimposition on a color-coded map. All the superimpositions were measured using the same scale on the distance color-coded map, in which red color represents overgrowth and blue color represents resorption. Results: Significant differences were observed in condylar volume, superficial area, and condylar position in both groups after 8 months. Compared with the control group (CG), the Twin-block group exhibited more obvious condyle-fossa modifications and joint positional changes. Moreover, on the color-coded map, more obvious condyle-fossa modifications could be observed in the posterior and superior directions in the Twin-block group than in the CG. Conclusions: We successfully established a 3D method for measuring and evaluating TMJ changes caused by Twin-block treatment. The treatment produced a larger condylar size and caused condylar positional changes.

Key Recovery Attacks on HMAC with Reduced-Round AES

  • Ryu, Ga-Yeon;Hong, Deukjo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.57-66
    • /
    • 2018
  • It is known that a single-key and a related-key attacks on AES-128 are possible for at most 7 and 8 rounds, respectively. The security of CMAC, a typical block-cipher-based MAC algorithm, has very high possibility of inheriting the security of the underlying block cipher. Since the attacks on the underlying block cipher can be applied directly to the first block of CMAC, the current security margin is not sufficient compared to what the designers of AES claimed. In this paper, we consider HMAC-DM-AES-128 as an alternative to CMAC-AES-128 and analyze its security for reduced rounds of AES-128. For 2-round AES-128, HMAC-DM-AES-128 requires the precomputation phase time complexity of $2^{97}$ AES, the online phase time complexity of $2^{98.68}$ AES and the data complexity of $2^{98}$ blocks. Our work is meaningful in the point that it is the first security analysis of MAC based on hash modes of AES.

High Performance Hardware Implementation of the 128-bit SEED Cryptography Algorithm (128비트 SEED 암호 알고리즘의 고속처리를 위한 하드웨어 구현)

  • 전신우;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • This paper implemented into hardware SEED which is the KOREA standard 128-bit block cipher. First, at the respect of hardware implementation, we compared and analyzed SEED with AES finalist algorithms - MARS, RC6, RIJNDAEL, SERPENT, TWOFISH, which are secret key block encryption algorithms. The encryption of SEED is faster than MARS, RC6, TWOFISH, but is as five times slow as RIJNDAEL which is the fastest. We propose a SEED hardware architecture which improves the encryption speed. We divided one round into three parts, J1 function block, J2 function block J3 function block including key mixing block, because SEED repeatedly executes the same operation 16 times, then we pipelined one round into three parts, J1 function block, J2 function block, J3 function block including key mixing block, because SEED repeatedly executes the same operation 16 times, then we pipelined it to make it more faster. G-function is implemented more easily by xoring four extended 4 byte SS-boxes. We tested it using ALTERA FPGA with Verilog HDL. If the design is synthesized with 0.5 um Samsung standard cell library, encryption of ECB and decryption of ECB, CBC, CFB, which can be pipelined would take 50 clock cycles to encrypt 384-bit plaintext, and hence we have 745.6 Mbps assuming 97.1 MHz clock frequency. Encryption of CBC, OFB, CFB and decryption of OFB, which cannot be pipelined have 258.9 Mbps under same condition.