• Title/Summary/Keyword: kernel distribution

Search Result 260, Processing Time 0.022 seconds

ON THE STABILITY OF THE PEXIDER EQUATION IN SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

  • Chung, Jae-Young;Chang, Jeong-Wook
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.467-485
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem $${\parallel}u{\circ}A-{\upsilon}{\circ}P_1-w{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$$ for the Schwartz distributions u, ${\upsilon}$, w, which is a distributional version of the Pexider generalization of the Hyers-Ulam-Rassias stability problem ${\mid}(x+y)-g(x)-h(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, x, $y{\in}\mathbb{R}^n$, for the functions f, g, h : $\mathbb{R}^n{\rightarrow}\mathbb{C}$.

Estimation of the number of discontinuity points based on likelihood (가능도함수를 이용한 불연속점 수의 추정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.51-59
    • /
    • 2010
  • In the case that the regression function has a discontinuity point in generalized linear model, Huh (2009) estimated the location and jump size using the log-likelihood weighted the one-sided kernel function. In this paper, we consider estimation of the unknown number of the discontinuity points in the regression function. The proposed algorithm is based on testing of the existence of a discontinuity point coming from the asymptotic distribution of the estimated jump size described in Huh (2009). The finite sample performance is illustrated by simulated example.

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

Analysis of Gravitational Coagulation of Aerosol Particles (중력 침강에 의한 입자 응집의 해석적 연구)

  • Jin, Hyeong-A;Jeong, Chang-Hun;Lee, Gyu-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.303-312
    • /
    • 1998
  • To obtain the solution to the time-dependent particle size distribution of an aerosol undergoing gravitational coagulation, the moment method was used which converts the non linear integro-differential equation to a set of ordinary differential equations. A semi-numerical solution was obtained using this method. Subsequently, an analytic solution was given by approximating the collision kernel into a form suitable for the analysis. The results show that during gravitational coagulation, the geometric standard deviation increases and the geometric mean radius decreases as time increases.

  • PDF

Nonparametric test for unknown age class of life distributions

  • Abu-Youssef, S.E.;Mohammed, B.I.;Bakr, M.E.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.99-110
    • /
    • 2014
  • Based on the kernel function, a new test is presented, testing $H_0:\bar{F}$ is exponential against $H_1:\bar{F}$ is UBACT and not exponential is given in section 2. Monte Carlos null distribution critical points for sample sizes n = 5(5)100 is investigated in section 3. The Pitman asymptotic efficiency for common alternatives is obtained in section 4. In section 5 we propose a test statistic for censored data. Finally, a numerical examples in medical science for complete and censored data using real data is presented in section 6.

  • PDF

Independence test of a continuous random variable and a discrete random variable

  • Yang, Jinyoung;Kim, Mijeong
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • In many cases, we are interested in identifying independence between variables. For continuous random variables, correlation coefficients are often used to describe the relationship between variables; however, correlation does not imply independence. For finite discrete random variables, we can use the Pearson chi-square test to find independency. For the mixed type of continuous and discrete random variables, we do not have a general type of independent test. In this study, we develop a independence test of a continuous random variable and a discrete random variable without assuming a specific distribution using kernel density estimation. We provide some statistical criteria to test independence under some special settings and apply the proposed independence test to Pima Indian diabetes data. Through simulations, we calculate false positive rates and true positive rates to compare the proposed test and Kolmogorov-Smirnov test.

Online Probability Density Estimation of Nonstationary Random Signal using Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.109-118
    • /
    • 2008
  • We present two estimators for discrete non-Gaussian and nonstationary probability density estimation based on a dynamic Bayesian network (DBN). The first estimator is for off line computation and consists of a DBN whose transition distribution is represented in terms of kernel functions. The estimator parameters are the weights and shifts of the kernel functions. The parameters are determined through a recursive learning algorithm using maximum likelihood (ML) estimation. The second estimator is a DBN whose parameters form the transition probabilities. We use an asymptotically convergent, recursive, on-line algorithm to update the parameters using observation data. The DBN calculates the state probabilities using the estimated parameters. We provide examples that demonstrate the usefulness and simplicity of the two proposed estimators.