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TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A
MATHEMATICAL MODEL OF HARMFUL ALGAL
INTERACTION

B. MUKHOPADHYAY* AND R. BHATTACHARYYA

ABSTRACT. The adverse effect of harmful plankton on the marine ecosys-
tem is a topic of deep concern. To investigate the role of such phyto-
plankton, a mathematical model containing distinct dynamical equations
for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the
resulting three equation model is carried out. A continuous time variation
in toxin liberation process is incorporated into the model and a stability
analysis of the resulting delay model is performed. The distributed de-
lay model is then extended to include the spatial distribution of plankton
and the delay-diffusion model is analyzed with spatial and spatiotemporal
kernels. Conditions for diffusion-driven instability in both the cases are de-
rived and compared to explore the significance of these kernels. Numerical
studies are performed to justify analytical findings.
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1. Introduction

Plankton are the basis of all marine aquatic food chains. There are two types
of plankton. The plant species is known as phytoplankton and the herbivore
animals feeding on these plants are termed zooplankton. Apart from occupying
the first trophic level, phytoplankton do a huge service by generating oxygen
needed for maintaining life and by absorbing carbon-di-oxide and thereby re-
ducing global warming. Besides oxygen and carbon-di-oxide, other substances
including phosphorus, nitrogen and sulphur are also recycled by phytoplankton
[1,2]. Hence, phytoplankton are one of the fundamental components controlling

further development of the climate and there is a vast literature on this subject
3,4].
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In spite of the important service rendered by these tiny organisms, some phy-
toplankton species are known to have adverse effects on their surrounding envi-
ronment. There has been a considerable scientific attention towards the study
of these harmful phytoplankton in recent times [5-11]. These phytoplankton
can be classified into two categories - (i) the toxin producers that contaminate
sea food and destroy fish; (ii) high biomass producers that cause mortality of
surrounding marine creatures after attaining dense concentrations. Species like
Alezandrium tamarense and Pseudo-nitzschia australis liberate toxins into the
environment before they are eaten up [12]. It has been well established through
field studies and experimental observations that a significant number of phyto-
plankton species produce toxins [8, 13-15] and the harmful impact of these toxic
substances on ecosystem and environment as a whole are recognized.

Time delays in the dynamics of several interacting species can arise from a
great variety of causes and are always present to some extent [16]. In the con-
text of plankton ecology, different researchers have incorporated time delays in
nutrient recycling, growth response to nutrient uptake etc. [17-19]. It is well
known that liberation of toxic elements by harmful phytoplankton species is not
an instantaneous process, but is mediated by some time delay. This phenomenon
is amply supported by the observation that zooplankton mortality due to toxic
phytoplankton bloom occurs after some time lapse. The field study conducted by
Chattopadhyay and his associates [10-11] suggests that the abundance of Para-
calanus (zooplankton) population reduces after some time lapse of the bloom
of the toxic phytoplankton Noctiluea Scintillans. This time delay can be inter-
preted ecologically as the time required for the phytoplankton to mature before
they can produce toxic materials. Several authors [20-21] have suggested that
the growth rate of zooplankton which consumes large phytoplankton cells are
slow relative to the growth rate of phytoplankton and there will be a relatively
long time gap between the onset of an increase in growth rate of phytoplank-
ton species and a build up in the biomass of zooplankton. Based on their field
study, Chattopadhyay et.al.[10] performed a mathematical study of two-species
plankton models under the influence of toxication delay both in discrete and
distributed form and observed that discrete time delay is capable of generating
periodic oscillation of different system components resembling phytoplankton
bloom. Sarkar et.al. [9] studied the same model with discrete time delay and
environmental fluctuations to predict a control mechanism for blooms.

An interesting aspect of modern biological research is the formation of spatial
and spatiotemporal patterns. It characterizes the dynamics of both aguatic and
terrestrial populations in their natural setting. In the natural marine environ-
ment, the spatial horizontal distribution of plankton is highly inhomogeneous
[22-23]. This inhomogeneity is evident in all scales and are related to various
factors such as the underlying hydrophysical fields like temperature and nutri-
ent [24-25], physical features of the fluid motion for example eddies, fronts and
turbulence [26-30]. In other cases where there is no such clear cut forcing mech-
anism, it is conjectured that the biological process inherent to the population
dynamics are important in producing such patchy distribution [31-35]. Using
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nonlinear reaction-diffusion equations as a mathematical tool [36-38], different
researchers have studied the problem of patchy plankton distribution and at-
tributed the formation of spatial patterns to well known general mechanisms
such as diffusion-driven Turing instability [39-40] or differential-flow-induced
instability [41]. Ruan [42] studied a two-species plankton model which con-
sidered distributed time delays in nutrient recycling and in plankton growth
response in a spatially heterogeneous environment. By using a spatial kernel
he has demonstrated the existence of Turing instability and subsequent travel-
ling waves. Bousaba et.al. [43] extended the work of Ruan for spatiotemporal
kernels. Using the method developed by Gourley and Britton [44] for a gen-
eral reaction-diffusion system, Mukhopadhyay and Bhattacharyya [45] investi-
gated a delay-diffusion phytoplankton-zooplankton model with spatiotemporal
kernel and established the role of toxin on phytoplankton bloom. They have
also studied a nutrient-plankton model in a purely spatial context and modelled
the impact of allelopathic phytoplankton on nutrient-plankton dynamics using a
type-IV zooplankton functional response as well as toxin-induced cross-diffusion
[48].

In the present analysis, we consider a three species plankton model consist-
ing of (i) Nontoxic phytoplankton (ii) toxic phytoplankton and (iii) zooplank-
ton. The time needed to release toxic substances is included as a distributed
time delay and the stability criteria of the delay model is investigated. Spatial
non-homogeneity in plankton distribution is modelled by incorporating physical
diffusion of the plankton communities. The resulting delay-diffusion model is
studied both with spatial and spatiotemporal kernels to explore the dynami-
cal complexity of the system under different realistic assumptions. Numerical
simulations are carried out to support analytical results.

2. The model

Let N(z,t), T(z,t) and Z(z,t) denote the densities of non-toxic phytoplank-
ton, toxic phytoplankton and zooplankton respectively at time ¢ and location «,
where 0 <1 < 00, —00 < t < 00.

Suppose, di, dz and d3 be the constant diffusion coefficients of the three
plankton populations. Then we have the following reaction-diffusion model with
delay in toxin production

ON 2N N NZ

o = g Tl (1—1?1) Ty T

aT 82T T TZ

S = e JER R 1
o = D trT (1 kg) T M)
0z 0%z NZ TZ ¢

2 _ g.22 —dZ — —alt=7)p(r)d

5 d?’axz +ﬁla+N+ﬁ2b+T dz GZ/_Ooae (1)dr

with initial conditions N(z,0) > 0, T'(z, A\) = (2, A) and Z(z,0) > 0 where
A € (—00,0) and 71 is a nonnegative continuous function and o > 0.
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Table 1
Values of model Pa.rameters‘

Parameters | Values/day
71 0.5
T2 0.4
k1 10
ko 11
ai 0.4
o 0.5

7 0.02
B 0.24
J62) 0.25
a 0.6

b 0.5

d 0.09

The growth process of both the phytoplankton species are taken to be logistic
with maximum growth rate r;, (i = 1, 2) and environmental carrying capacity k;,
{i = 1,2). Loss of both phytoplankton species due to grazing by zooplankton fol-
lows a simple saturating functional response formulated as a Michaelis-Menten
function of phytoplankton density with half saturation constants a (for non-
toxic) and b (for toxic) and maximum per capita grazing rates of o1 and as.
The non-toxic phytoplankton suffer additional losses due to the inhibitory ef-
fect of toxic phytoplankton at a rate u. As is already mentioned, the harmful
phytoplankton is capable of reaching dense concentration through rapid growth
and hence can inhibit the growth and development of the non-toxic ones. The
inhibitory effect of non-toxic phytoplankton on toxic ones is neglected since it is
insignificantly small compared to the effect of toxic phytoplankton on nontoxic
ones. Food intake by zooplankton is converted into growth with efficiencies 5
and B2. In addition to a fixed mortality d, zooplankton population is also de-
stroyed due to the toxin produced by harmful phytoplankton at a rate 6. As
is already mentioned, production of toxin by harmful phytoplankton is not an
instantaneous process and the delay is due to the time taken by phytoplankton
to mature before they can release toxins. However, different harmful plankton
species is expected to have distinct maturation time and consequently we have
used a distributed time delay with a weak kernel.

We denote the interior equilibrium point of system (1) by E* = (N*,T*, Z*)

where b+ T T
) - *?‘2 ¢
g0t refy 2 2
N ( k2> @

(N*,T™*) is the positive root of the system

_EY [\ Yy oy =
" (1 k1> (a+x) (69 (b+y) (1 k) Hry 0

T Yy
—d— 6y = 3
by g A=y =0 ®3)

3. The delayed homogeneous system
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First we consider the model (1) in a spatially homogeneous environment
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FIGURE 1. Numerical simulation of the distributed delay model. Pa-
rameter values are taken from Table 1 and # = 0.01. The figure exhibits
oscillatory coexistence of all populations.

namely,
% = r1N(1—kﬁl>—a1;]j_iN—MNT
T m:r(l_%)—ag-b{% @)
2N T [ e

with o > 0. The characteristic equation of the linearized system corresponding
to (4) about E* (obtained by using linear chain trick) will be
M PLO)A3 4 Pa(0))N2 + P3(0)\ + Py(0) =0 (5)

where

Pl(g) = A(O) +a
Py(0) = Aa + B — azsx
P3(0) = Ba + C + caza(ass + a11) (6)
Py(0) = Ca — ar1a22034
a3y = —0Z*
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FIGURE 2. Numerical simulation of the DDE model with & = 0.03. The
figure exhibits oscillatory behavior of nontoxic phytoplankton and zoo-
plankton and extinction of toxic phytoplankton.

Now the delayed system will be asymptotically stable about E* if

Pi(9) >0

Pl(O)Pz(O) - Pg(@) >0 (7)
Py(6)[P2(6)Ps(6) — Py(0)P4(6)] — [P3(6))* >0

P4(9) >0

Obviously, Pi(f) > 0 if A > 0. Also for small 6, the second and the last
inequalities will automatically hold. Thus, the system will exhibit stable or
unstable behavior according as

U(0) = Py(6)[P2(6)Ps(6) — P1(8)Ps(6)] — [Ps(6)*] (8)

is positive or negative. From the above analysis it is seen that the toxication rate
6 is an important parameter in controlling the system dynamics for the delayed
homogeneous system. A numerical study of model (4) is performed and the
results are shown in Figures 1 — 5. Figure 1 exhibits the oscillatory coexistence
of all the three species for # = 0.01. As 6 increases (9 = 0.03), the nontoxic
phytoplankton and the zooplankton survive in an oscillatory fashion whereas
the toxic ones undergo ultimate extinction (Figure-2). A further increase of
¢ shows that for # € [0.04,0.05], the toxic phytoplankton and the zooplankton
exhibit oscillatory coexistence and the nontoxic ones undergo extinction (Figure-
3,4). When 6 is increased beyond 6 = 0.06, the toxic ones and the zooplankton
coexist in a stable manner and the nontoxic ones undergo total extinction (Fig 5).
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FIGURE 3. Numerical simulation of the DDE model with § = 0.04. The
figure exhibits oscillatory coexistence of toxic phytoplankton and zooplank-
ton and almost extinction of nontoxic ones.
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FIGURE 4. Numerical simulation
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of the DDE model with § = 0.05. The

figure exhibits oscillatory coexistence of toxic phytoplankton and zooplank-

ton and extinction of nontoxic ones

Interestingly, in all the above cases, the delay parameter (o) has no significant

impact on population evolution.
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FIGURE 5. Numerical simulation of the DDE model with 8 = 0.07. The
figure exhibits stable coexistence of toxic phytoplankton and zoop}ankton
and extinction of nontoxic ones.

4. Effect of spatial kernel

In this section, we study the model with spatial kernel, namely model (1).
We start the analysis by letting

t
R:/ ae= T (r)dr
—00

system (1) reduces to

2
W 2 (1) N

9t ox2 k1 a+ N

%— = dz%% +roT (1 - %) “azbj—;_iT ©)
%—f = d3%+51 Nz +ﬂ2b+T dZ - 6ZR

%? = a(Z -~ R)

The positive interior equilibrium point of (9) is Ef = (N*,T*, Z*, R*) where
R* = Z*. Let,

=N-~N* w=T-T% wuy=Z-2% us=R~-R" (10)

Then the linearized system corresponding to (9) at Ej is
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We assume a solution of (11) in the form
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(1)

(12)

where ¢ is the wave number of perturbation in the direction of 2 and A is the

Nontoxic Phytoplankton (N)

Nentoxic Phytoplankton Pattern
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FIGURE 6. Numerical simulation of the delay-diffusion model showing
the nontoxic phytoplankton pattern. The simulation is done for 0 < @ <
100 with zero flux boundary. Parameter values are taken from Table 1
together with o = 1.5, Dy = 0.0065; Dy = 0.005; D3 = 0.007.

frequency. The characteristic equation corresponding to (11) will be

where

mi (6, %)
mo (9’ q2)

A+ ma (8, 62N+ ma(8,¢*)A? +ms (6, ¢®)A + ma(8,¢*) =0

A+ a+(di +da + d3)g®
a[A + (dl +da + da)q2] + B+ Adng + (d1d2 + dids + d2d3)q4

—QO34

(13)
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FIGURE 8. Numerical simulation of the delay-diffusion model showing
+d1dadaq® — aaga{A+ (di + d2)d?}

the zooplankton pattern. Parameter values are same as that in Figure 6.
2 2
ms{6,¢°) = Ba+C+ (Aods — a11dea — agedio — agzasedy — asiassds)q
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ma(0,¢*) = o[C — azsasdig® — aaizaszidag® + a1az2dsq’ (14)
+ dag*(—an1ds — asedi) + didadsd®] — aazs(ann — dig?)(ag: — dag®)
Now for diffusive instability, one of the following conditions must be violated.
m1(0,¢%) >0
mi (6, ¢*)ma(6, ¢*) — m3(6,¢%) > 0
m1 (8, @ ){ma(6, @*)ms (6, ¢%) — ma (8, ¢*)ma(6, ¢*)} — {ms(6,4*)}* > 0
m4(6,4°) > 0 (15)

The first condition holds for P; > 0. Also, for ¢® > (aga/d2) = g, the fourth
condition will be satisfied. The second condition will hold provided P; (&) Pa(o)—
Ps(a) > 0 which is one of the criteria for stability of the non-diffusive system.
Thus system (1) will undergo diffusion-driven instability when

ma (8, ¢°)[m2 (6, @ )ma (0, ¢*) — mi (6, @*yma (6, ¢*)] — ma(6,¢%)* <0 (16)

Hence the toxication rate § together with the wave number of perturbation
q play an important role in the occurrence of diffusion-driven instability for the
system. A numerical simulation of the model system (9) is performed using
MATLAB and the resulting spatial patterns of toxic and non-toxic phytoplank-
ton and the zooplankton are shown in Figure 6 —-8. The figures indicate that the
spatial models exhibit unstable behaviour for the same parameter values which
impart stability to the non-spatial system; this numerically confirms existence
of diffusion-driven instability.

5. Role of spatiotemporal kernel

The delay-diffusion model of the previous section using a spatial kernel ignores
the fact that harmful phytoplankton, that are undergoing continuous drift due
to lateral diffusion, are not at the same location as at previous times. In this
section, we take into account this nonlocal effect [44] within a finite interval I
by incorporating a second convolution in the integral term of equation (1) which
converts the spatial kernel of (1) into a spatiotemporal kernel. The effect of
toxins on zooplankton now depends not only on phytoplankton density at one
point in space and time, but on the weighted average involving values at all
previous times and all points in space within I. With these assumptions, we
have the following modified model

aN 2N N NZ

e d16—x2+r1N<1_k_1)_alm—‘uNT

oT °T T TZ

or  _ _Ty_,, Tz 17
ot d%)?”"’T(l k2) 25T (7
oz ?z . NZ TZ

e da2+ﬁl +B2b+T 4z

_ fOL e—Blz—z|dy
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with the boundary condition ¥ =
and same initial conditions as 1n (1)

System (17) is equivalent to

62
+ TzT (1 -
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. NZ
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)
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TZ
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(18)

MEEEE
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a+ N

L ¢~Blz=yl R(z, y)
o [FePle- zidz
Using the transformation as in (10) and linearizing we find

8u1

ot
aU2

ot
6us

ot

611,4

ot
We assurne solution of (19) in the form

+ B —dZ -0Z

5 + 52

U1
dl—é@— + a11u1 + e12uz + a13u3
20
dz~3—2— + agauz + ag3uz
5 3

(19)

LAl Ry

d
= 0 fo e—Blz— Zldz

+ agity + agauz + azq

a(u;; - U4)

Uy
Uz
Uz
Ug

o
o2
a3
o4

cos (gz)e (20)

where ¢ is the wave number and X is the frequency. The boundary conditions
imply that ¢ = 2T where n is the half-wavelength and

,sz...}_ﬂ/L[ _‘f‘ifl@_ ]I‘(z)dx (21)
Jo T?(z)dz Jo fo e—Ble—zldy
where
T'(z) = cos(kzx) (22)
The characteristic equation of (19) will be
M+ 81X+ 502 + 830+ 84 =0 (23)
where
S] = My
8 = 8o —yaass
S3 = Sz —yoasa(A+dig® +dag®) (24)
Sy = Su —7oass(anr — dig?) e — dad®)
Sy = mao+oaass  Ss=ma+ oag(A+dig® + dag’)
Sa1 ms + aasa(arn — dig?)(age — dag®)
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To study the stability of the system we have to look at the following inequalities.

S >0
518, — 53> 0

81(S283 — 8184) — S22 >0 (25)
S4>0

Now, my > 0 implies S; > 0. Also, positivity of Sy is assured from P, > 0 and
5185 — S3 > 0 follows from mimg — mg > 0. So, the stability criteria of (19)
will be determined by the third inequality above. Let us denote

51(S253 — 8184) - S2 =11 + I, (26)
where I; represent terms devoid of v and
I, = oas0a3Si{A+ (di +d2)g®} — (S1S21 — 2831 ){A+ (di + d2)¢’}
—  S1831 + S3(a11 — d1g*)(az2 — dag®)] (27)
From (21) it is clear that |y| < 1. Simple algebra reveals that
my(moms —mimy) —m3 = I + I (28)
Rewriting (27) in the form

Iz = aa34[(d1d25f)q4 + {01(13451 (d1 + d2) - (S1521 - 25’Iil)(dl + d2) (29)
—  S%(ay11dy — agedi)}¢® + {AcazaSy — A(S1S21 — 2831) + S2a11a22}]

it is seen that Iy is a quadratic in ¢?. Therefore, if I = 0 has two real roots
say, ¢2 and ¢% with ¢2 > 0, then I, will be positive provided Z<g<glor
0 < g% < g2 according as g2 > 0 or ¢2 < 0.
Now we consider the following cases

1 If I; and I, are both positive then the population will have uniform distri-
bution and no pattern can be generated with or without nonlocal effect.

2If I, >0, I < 0but I + I > 0 then I; + I, will also be positive as
lv] < 1. In this case also, no diffusive instability will occur.

31If I; <0and I, <0 (and consequently Iy + I < 0) then the system with
spatial as well as spatiotemporal kernel will exhibit diffusion induced instability.

4 Finally, when I; < 0, I > 0 but I1 + I3 > 0, then I; ++I> can have negative
values. Thus in this situation the model with spatiotemporal kernel can exhibit
diffusion-driven instability under the same parameter restriction which ensures
stability for the model with spatial kernel. Moreover, diffusive instability in this
case is controlled by the toxication rate 8 together with g.

6. Discussion

In the present paper we have investigated the effect of spatial and spatiotem-
poral variation on a mathematical model of harmful algae where the toxic and
nontoxic phytoplankton have distinct dynamical evolution.

In section 3, we have studied the effect of toxication delay on the system
dynamics, where we have taken the delay in the distributed form. Our analysis
showed that instead of the delay parameter «, the dynamics is controlled by
the toxication rate 8. From our numerical study, we have obtained two threshold
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values of 8, the first one of which facilitates extinction of toxic phytoplankton and
the second one, that of nontoxic phytoplankton while the other two populations
coexist in an oscillatory way. Thus when delay in toxin production is taken into
account, extinction of zooplankton is not possible and the plankton bloom is
contributed either by the toxic or the nontoxic phytoplankton together with the
zooplankton. We have also obtained stable coexistence of toxic phytoplankton
and zooplankton for further higher values of §. Thus, the toxication rate 6 can
be a very significant parameter in the context of occurrence and/or termination
of algal blooms.

Next we have analyzed a spatial extension of the delay model. Spatial patch-
iness is a very prominent aspect of marine plankton ecology and hence spatial
models are of paramount interest in this context. We have divided our spa-
tial study into two parts. In section 4, we have utilized a spatial kernel which
measures toxin production point wise in space. In section 5, we have explored
a spatiotemporal kernel that incorporates the so called nonlocal effect [44] and
hence takes into account the fact that the plankton may not be at the same point
in space as at earlier times due to continuous drift. Our analysis in both these
cases revealed the occurrence of diffusive instability which is controlled by the
toxication parameter ¢ together with the wave number g. Thus, the toxication
rate 8 is seen to have a very significant impact on the system dynamics in the
presence and absence of spatial effect and with spatial as well as spatiotemporal
kernel. ‘

Another noticeable outcome of the above analysis is that the spatiotempo-
ral kernel is capable of generating diffusion-driven instability under the same
parametric conditions for which the spatial model remains stable. As diffusion
process is known to have a destabilizing effect on plankton dynamics, the above
finding exemplifies the realism of spatiotemporal kernels over the spatial ones in
the context of marine plankton ecology.
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