References
- Anselin, L. and Florax, R. J. G. M. (1995). New Directions in Spatial Econometrics, Springer, Berlin.
- Attouch, M. K., Laksaci, A. and Ould Said, E. (2009). Asymptotic distribution of robust estimator for functional nonparametric models, Communications in Statistics - Theory and Methods, 38, 1317-1335. https://doi.org/10.1080/03610920802422597
- Attouch, M. K., Laksaci, A. and Ould-Said, E. (2010). Asymptotic normality of a robust estimator of the regression function for functional time series, Journal of the Korean Statistical Society, 39, 489-500. https://doi.org/10.1016/j.jkss.2009.10.007
- Azzedine, N., Laksaci, A. and Ould Said, E. (2008). On the robust nonparametric regression estimation for functional regressor, Statistics & Probability Letters, 78, 3216-3221. https://doi.org/10.1016/j.spl.2008.06.018
- Biau, G. (2003). Spatial Kernel Density Estimation, Mathematical Methods of Statistics, 12, 371-390.
- Biau, G. and Cadre, B. (2004). Nonparametric spatial prediction, Statistical Inference for Stochastic Processes, 7, 327-349. https://doi.org/10.1023/B:SISP.0000049116.23705.88
- Boente, G. and Fraiman, R. (1989). Nonparametric regression estimation, Journal of Multivariate Analysis, 29, 180-198. https://doi.org/10.1016/0047-259X(89)90023-7
- Bosq, D. (2000). Linear Processes in Function Spaces. Theory and Application, Lectures Notes in Statistics. Springer Verlag, New York.
-
Cadre, B. (2001). Convergent estimators for the
$L_1$ -median of a Banach-valued random variable, Statistics, 35, 509-521. https://doi.org/10.1080/02331880108802751 - Carbon, M., Francq, C. and Tran, L. T. (2007). Kernel regression estimation for random fields, Journal of Statistical Planning and Inference, 137, 778-798. https://doi.org/10.1016/j.jspi.2006.06.008
-
Carbon, M., Hallin, M. and Tran, L. T. (1996). Kernel density estimation for random fields: The
$L^1$ theory, Journal of Nonparametric Statistics, 6, 157-170. https://doi.org/10.1080/10485259608832669 - Chen, J. and Zhang, L. (2009). Asymptotic properties of nonparametric M-estimation for mixing functional data, Journal of Statistical Planning and Inference, 139, 533-546. https://doi.org/10.1016/j.jspi.2008.05.007
- Collomb, G. and Hardle, W. (1986). Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations, Stochastic Processes and their Applications, 23, 77-89. https://doi.org/10.1016/0304-4149(86)90017-7
- Crambes, C., Delsol, L. and Laksaci, A. (2008). Robust nonparametric estimation for functional data, Journal of Nonparametric Statistics, 20, 573-598. https://doi.org/10.1080/10485250802331524
- Cressie, N. A. C. (1991). Statistics for spatial Data, Wiley Series in Probability and Mathematical Statistics, New York.
- Dabo-Niang, S. and Thiam, B. (2010). Robust quantile estimation and prediction for spatial processes, Statistics & Probability Letters, 80, 1447-1458. https://doi.org/10.1016/j.spl.2010.05.012
- Dabo-Niang, S. and Yao, A. F. (2007). Spatial kernel regression estimation, Mathematical Methods of Statistics, 16, 1-20. https://doi.org/10.3103/S1066530707010012
- Delicado, P., Giraldo, R., Comas, C. and Mateu, J. (2010). Statistics for spatial functional data: Some recent contributions, Environmetrics, 21, 224-239. https://doi.org/10.1002/env.1003
- Doukhan, P., Massart, P. and Rio, E. (1994). The functional central limit theorem for strongly mixing processes, Annales de l'Institut Henri Poincare, 30, 63-82.
- Ferraty, F., Laksaci, A. and Vieu, P. (2006). Estimating some characteristics of the conditional distribution in nonparametric functional models, Statistical Inference for Stochastic Processes, 9, 47-76. https://doi.org/10.1007/s11203-004-3561-3
- Ferraty, F. and Vieu, P. (2006). Nonparametric Functional Data Analysis. Theory and Practice, Springer-Verlag, New York.
- Gheriballah, A., Laksaci, A. and Rouane, R. (2010). Robust nonparametric estimation for spatial regression, Journal of Statistical Planning and Inference, 140, 1656-1670. https://doi.org/10.1016/j.jspi.2010.01.042
- Guyon, X. (1987). Estimation d'un champ par pseudo-vraisemblance conditionnelle: Etude asymptotique et application au cas Markovien, Proceedings of the Sixth Franco-Belgian Meeting of Statisticia.
- Guyon, X. (1995). Random Fields on a Network - Modeling, Statistics, and Applications, Springer, New York.
- Hallin, M., Lu, Z. and Yu, K. (2009). Local linear spatial quantile regression, Bernoulli, 15, 659-686. https://doi.org/10.3150/08-BEJ168
- Laib, N. and Ould Said, E. (2000). A robust nonparametric estimation of the autoregression function under ergodic hypothesis, Canadian Journal of Statistics, 28, 817-828. https://doi.org/10.2307/3315918
- Li, J. and Tran, L. T. (2009). Nonparametric estimation of conditional expectation, Journal of Statistical Planning and Inference, 139, 164-175. https://doi.org/10.1016/j.jspi.2008.04.023
- Lu, C., Chen, D. and Kou, Y. (2003). Detecting spatial outliers with multiple attributes, IEEE, 2-3, 122-128. https://doi.org/10.1109/TAI.2003.1250179
- Nerini, D., Monestiez, P. and Mante, C. (2010). A cokriging method for spatial functional, Journal of Multivariate Analysis, 101, 409-418. https://doi.org/10.1016/j.jmva.2009.03.005
- Ramsay, J. (2008). FDA problems that I like to talk about, Personal Communication.
- Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis. Methods and Case Studies, Springer-Verlag, New York.
- Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, Second edition, Springer-Verlag, New York.
- Ripley, B. (1981). Spatial Statistics, Wiley, New York.
- Tran, L. T. (1990). Kernel density estimation under dependence, Statistics & Probability Letters, 10, 193-201. https://doi.org/10.1016/0167-7152(90)90073-G
-
Xu, R. andWang, J. (2008).
$L_1$ - estimation for spatial nonparametric regression, Journal of Nonparametric Statistics, 20, 523-537. https://doi.org/10.1080/10485250801976717