• 제목/요약/키워드: kV imaging

검색결과 398건 처리시간 0.02초

의료영상장치의 전자파 안전에 대한 연구 (A Study on the Safety of Electromagnetic Wave of Medical Imaging System)

  • 선종률;이원정;임재동
    • 대한안전경영과학회지
    • /
    • 제12권4호
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

두경부 종양에서 $^{99m}Tc$-(V)-DMSA 영상술의 진단적 유용성 (The Clinical Role of $^{99m}Tc$-(V)-DMSA Imaging in Patients with Head and Neck Cancer)

  • 배선근;이재태;박준식;박인규;현동우;이영학;김정균;안병철;최지용;손상균;이규보
    • 대한핵의학회지
    • /
    • 제29권4호
    • /
    • pp.526-532
    • /
    • 1995
  • 두경부의 악성 종양의 진단에서 $^{99m}Tc$-(V)-DMSA 영상술은 비교적 높은 양성율을 보여 주었고 (Planar 65%, SPECT 90%), 원격 전이부위의 영상진단에도 도움이 되었다. 그러나 $^{99m}Tc$-(V)-DMSA는 두경부의 양성 병변에도 섭취가 될 수 있어, 판독 시 임상검사 및 다른 영상소견과의 비교검토가 필요할 것으로 판단된다.

  • PDF

Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope

  • Ryu, Gyeong Hee;Park, Hyo Ju;Kim, Na Yeon;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제42권4호
    • /
    • pp.218-222
    • /
    • 2012
  • Modern aberration-corrected transmission electron microscope (TEM) with appropriate electron beam energy is able to achieve atomic resolution imaging of single and bilayer graphene sheets. Especially, atomic configuration of bilayer graphene with a rotation angle can be identified from the direct imaging and phase reconstructed imaging since atomic resolution Moir$\acute{e}$ pattern can be obtained successfully at atomic scale using an aberration-corrected TEM. This study boosts a reliable stacking order analysis, which is required for synthesized or artificially prepared multilayer graphene, and lets graphene researchers utilize the information of atomic configuration of stacked graphene layers readily.

Application of T1 Map Information Based on Synthetic MRI for Dynamic Contrast-Enhanced Imaging: A Comparison Study with the Fixed Baseline T1 Value Method

  • Dong Jae Shin;Seung Hong Choi;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn;Sang Won Jo;Eun Jung Lee
    • Korean Journal of Radiology
    • /
    • 제22권8호
    • /
    • pp.1352-1368
    • /
    • 2021
  • Objective: For an accurate dynamic contrast-enhanced (DCE) MRI analysis, exact baseline T1 mapping is critical. The purpose of this study was to compare the pharmacokinetic parameters of DCE MRI using synthetic MRI with those using fixed baseline T1 values. Materials and Methods: This retrospective study included 102 patients who underwent both DCE and synthetic brain MRI. Two methods were set for the baseline T1: one using the fixed value and the other using the T1 map from synthetic MRI. The volume transfer constant (Ktrans), volume of the vascular plasma space (vp), and the volume of the extravascular extracellular space (ve) were compared between the two methods. The interclass correlation coefficients and the Bland-Altman method were used to assess the reliability. Results: In normal-appearing frontal white matter (WM), the mean values of Ktrans, ve, and vp were significantly higher in the fixed value method than in the T1 map method. In the normal-appearing occipital WM, the mean values of ve and vp were significantly higher in the fixed value method. In the putamen and head of the caudate nucleus, the mean values of Ktrans, ve, and vp were significantly lower in the fixed value method. In addition, the T1 map method showed comparable interobserver agreements with the fixed baseline T1 value method. Conclusion: The T1 map method using synthetic MRI may be useful for reflecting individual differences and reliable measurements in clinical applications of DCE MRI.

XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구 (Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT)

  • 정한성;김영주;오오성;이세호;전호상;이승욱
    • 한국의학물리학회지:의학물리
    • /
    • 제26권3호
    • /
    • pp.143-152
    • /
    • 2015
  • 본 연구에서는 두 개의 치료빔 가속기가 사용되는 구조에서 종양 위치 추적을 하는 두 쌍의 kV 영상시스템의 기하학적 설계 및 종양 위치 추적 정확도 분석을 목표로 하고 있다. 특히, 병변의 위치추적을 위한 수식 및 알고리즘을 수립하였고, 두 쌍의 kV 영상 시스템이 비직교 위치에 놓일 때 검출기 해상도가 종양 위치 추적 오차에 미치는 영향에 대해서 모의실험으로 분석하여 보았다. 병변의 위치추적을 위한 수식 및 알고리즘을 수립하기 위해서 각 엑스선원, 검출기 등의 절대좌표는 동차방정식을 이용하여 설정하였으며, 삼차원 상의 두 직선의 방정식을 통하여 병변의 절대위치를 찾아내도록 하였다. XCAT 프로그램을 이용한 모의실험을 통해서 영상 검출기의 해상도가 미치는 영향을 두 개의 kV 영상시스템의 각도에 따라서 분석하여보았다. XCAT 소프트웨어를 이용하여서 팬텀에 병변 추적을 위한 금속 기점 마커를 삽입하였고, CT projection 프로그램을 이용하여 각 kV 영상시스템의 각도별, 검출기의 해상도별 영상을 획득할 수 있다. 모의실험 결과, 두 kV영상시스템의 각도가 $90^{\circ}$에서 $50^{\circ}$까지는 검출기 해상도가 1.5 mm/pixel보다 고해상도 일 때 약 1 mm 이하의 위치 오차를 보였다. 하지만, 검출기의 해상도가 1.5 mm/pixel 이상으로 나빠질수록 오차가 약 1 mm 이상으로 나타날 뿐만 아니라 각도에 따른 오차의 변동이 컸다. 검출기의 해상도가 개선될 수록 그 각도별 오차의 변동이 줄어들고, $90^{\circ}$에서 가장 적은 오차가 발생 하는 것을 볼 수 있었다. 충분한 해상도의 검출기가 사용된다면 듀얼헤드 겐트리 시스템과 같이 공간적으로 제한된 방사선 치료기기에 두 개의 kV 영상시스템을 예각으로 설치하여도 된다는 결론을 도출할 수 있었다. 본 연구에서 개발한 모의실험 방법론은 병변의 위치, 검출기의 특성, kV 영상 시스템의 기하학적 배치에 따른 종양추적 위치 추적시스템의 정확도를 분석하는 도구로서 유용하게 사용될 수 있을 것이다.

세포고사의 핵의학영상 (In Vivo Nuclear Imaging of Apoptosis)

  • 이태섭;천기정
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.190-197
    • /
    • 2004
  • Apoptosis plays a role in the pathophysiology of many kinds of diseases and in the response of treatment. Compared to the necrosis, the apoptosis is a genetically controlled and energy-dependent process which removes the unwanted cells from the body; programmed cell death or cell suicide. During the apoptosis, phosphatidylserine is expressed in the cytoplasmic outer membrane in the early phase. Annexin V, an endogenous human protein (MW=35 kD), has an affinity of about $10^{-9}\;M$ for the phosphatidylserine exposed on the outer membrane of apoptotic cells. Annexin V can be radiolabeled with $^{99m}Tc$ by HYNIC or EC chelators, which can be used as an radiotracer for the in vivo imaging of apoptosis. In this article, we reviewed the apoptosis, radiolabeling of annexin V, and the experimental and clinical data using annexin V imaging.

Development of hand-held coded-aperture gamma ray imaging system based on GAGG(Ce) scintillator coupled with SiPM array

  • Jeong, Manhee;Hammig, Mark
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2572-2580
    • /
    • 2020
  • Emerging gamma ray detection applications that utilize neutron-based interrogation result in the prompt emission of high-energy (>2 MeV) gamma-rays. Rapid imaging is enabled by scintillators that possess high density, high atomic number, and excellent energy resolution. In this paper, we evaluate the bright (50,000 photons/MeV) oxide scintillator, cerium-doped Gd2Al2Ga3O12 (GAGG(Ce)). A silicon photomultiplier (SiPM) array is coupled to a GAGG(Ce) scintillator array (12 × 12 pixels) and integrated into a coded-aperture based gamma-ray imaging system. A resistor-based symmetric charge division circuit was used reduce the multiplicity of the analog outputs from 144 to 4. The developed system exhibits 9.1%, 8.3%, and 8.0% FWHM energy resolutions at 511 keV, 662 keV, and 1173.2 keV, respectively. In addition, a pixel-identification resolution of 602 ㎛ FWHM was obtained from the GAGG(Ce) scintillator array.

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

A NEW ALTERNATIVE ELLIPTIC PDE IN EIT IMAGING

  • Kim, Sungwhan
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1291-1302
    • /
    • 2012
  • In this paper, we introduce a new elliptic PDE: $$\{{\nabla}{\cdot}\(\frac{|{\gamma}^{\omega}(r)|^2}{\sigma}{\nabla}v_{\omega}(r)\)=0,\;r{\in}{\Omega},\\v_{\omega}(r)=f(r),\;r{\in}{\partial}{\Omega},$$ where ${\gamma}^{\omega}={\sigma}+i{\omega}{\epsilon}$ is the admittivity distribution of the conducting material ${\Omega}$ and it is shown that the introduced elliptic PDE can replace the standard elliptic PDE with conductivity coefficient in EIT imaging. Indeed, letting $v_0$ be the solution to the standard elliptic PDE with conductivity coefficient, the solution $v_{\omega}$ is quite close to the solution $v_0$ and can show spectroscopic properties of the conducting object ${\Omega}$ unlike $v_0$. In particular, the potential $v_{\omega}$ can be used in detecting a thin low-conducting anomaly located in ${\Omega}$ since the spectroscopic change of the Neumann data of $v_{\omega}$ is inversely proportional to thickness of the thin anomaly.

Investigation of the Effect of kV Combinations on Image Quality for Virtual Monochromatic Imaging Using Dual-Energy CT: A Phantom Study

  • Jeon, Pil-Hyun;Chung, Heejun;Kim, Daehong
    • Journal of Radiation Protection and Research
    • /
    • 제43권1호
    • /
    • pp.1-9
    • /
    • 2018
  • Background: In this study, we investigate the image quality of virtual monochromatic images synthesized from dual-energy computed tomography (DECT) at voltages of 80/140 kV and 100/140 kV. Materials and Methods: Virtual monochromatic images of a phantom are synthesized from DECT scans from 40 to 70 keV in steps of 1 keV under the two combinations of tube voltages. The dose allocation of dual-energy (DE) scan is 50% for both low- and high-energy tubes. The virtual monochromatic images are compared to single-energy (SE) images at the same radiation dose. In the DE images, noise is reduced using the 100/140 kV scan at the optimal monochromatic energy. Virtual monochromatic images are reconstructed from 40 to 70 keV in 1-keV increments and analyzed using two quality indexes: noise and contrast-to-noise ratio (CNR). Results and Discussion: The DE scan mode with the 100/140 kV protocol achieved a better maximum CNR compared to the 80/140 kV protocol for various materials, except for adipose and brain. Image noise is reduced with the 100/140 kV protocol. The CNR values of DE with the 100/140 kV protocol is similar to or higher than that of SE at 120 kV at the same radiation dose. Furthermore, the maximum CNR with the 100/140 kV protocol is similar to or higher than that of the SE scan at 120 kV. Conclusion: It was found that the CNR achieved with the 100/140 kV protocol was better than that with the 80/140 kV protocol at optimal monochromatic energies. Virtual monochromatic imaging using the 100/140 kV protocol could be considered for application in breast, brain, lung, liver, and bone CT in accordance with the CNR results.