DOI QR코드

DOI QR Code

Application of T1 Map Information Based on Synthetic MRI for Dynamic Contrast-Enhanced Imaging: A Comparison Study with the Fixed Baseline T1 Value Method

  • Dong Jae Shin (Department of Radiology, Seoul National University College of Medicine) ;
  • Seung Hong Choi (Department of Radiology, Seoul National University College of Medicine) ;
  • Roh-Eul Yoo (Department of Radiology, Seoul National University College of Medicine) ;
  • Koung Mi Kang (Department of Radiology, Seoul National University College of Medicine) ;
  • Tae Jin Yun (Department of Radiology, Seoul National University College of Medicine) ;
  • Ji-Hoon Kim (Department of Radiology, Seoul National University College of Medicine) ;
  • Chul-Ho Sohn (Department of Radiology, Seoul National University College of Medicine) ;
  • Sang Won Jo (Department of Radiology, Hallym University Dongtan Sacred Heart Hospital) ;
  • Eun Jung Lee (Department of Radiology, Human Medical Imaging & Intervention Center)
  • Received : 2020.10.09
  • Accepted : 2020.12.31
  • Published : 2021.08.01

Abstract

Objective: For an accurate dynamic contrast-enhanced (DCE) MRI analysis, exact baseline T1 mapping is critical. The purpose of this study was to compare the pharmacokinetic parameters of DCE MRI using synthetic MRI with those using fixed baseline T1 values. Materials and Methods: This retrospective study included 102 patients who underwent both DCE and synthetic brain MRI. Two methods were set for the baseline T1: one using the fixed value and the other using the T1 map from synthetic MRI. The volume transfer constant (Ktrans), volume of the vascular plasma space (vp), and the volume of the extravascular extracellular space (ve) were compared between the two methods. The interclass correlation coefficients and the Bland-Altman method were used to assess the reliability. Results: In normal-appearing frontal white matter (WM), the mean values of Ktrans, ve, and vp were significantly higher in the fixed value method than in the T1 map method. In the normal-appearing occipital WM, the mean values of ve and vp were significantly higher in the fixed value method. In the putamen and head of the caudate nucleus, the mean values of Ktrans, ve, and vp were significantly lower in the fixed value method. In addition, the T1 map method showed comparable interobserver agreements with the fixed baseline T1 value method. Conclusion: The T1 map method using synthetic MRI may be useful for reflecting individual differences and reliable measurements in clinical applications of DCE MRI.

Keywords

Acknowledgement

This study was supported by a grant from the Korea Healthcare technology R&D Projects, Ministry for Health, Welfare & Family Affairs (HI16C1111), by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1914002), by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2020R1A2C2008949 and NRF-2020R1A4A1018714), by CreativePioneering Researchers Program through Seoul National University (SNU), and by the Institute for Basic Science (IBS-R006-A1).

References

  1. Gaddikeri S, Gaddikeri RS, Tailor T, Anzai Y. Dynamic contrast-enhanced MR imaging in head and neck cancer: techniques and clinical applications. AJNR Am J Neuroradiol 2015;37:588-595 https://doi.org/10.3174/ajnr.A4458
  2. Cheng HL. Investigation and optimization of parameter accuracy in dynamic contrast-enhanced MRI. J Magn Reson Imaging 2008;28:736-743
  3. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232
  4. Wang HZ, Riederer SJ, Lee JN. Optimizing the precision in T1 relaxation estimation using limited flip angles. Magn Reson Med 1987;5:399-416 https://doi.org/10.1002/mrm.1910050502
  5. Ogg RJ, Kingsley PB. Optimized precision of inversion-recovery T1 measurements for constrained scan time. Magn Reson Med 2004;51:625-630 https://doi.org/10.1002/mrm.10734
  6. Freeman AJ, Gowland PA, Mansfield P. Optimization of the ultrafast Look-Locker echo-planar imaging T1 mapping sequence. Magn Reson Imaging 1998;16:765-772 https://doi.org/10.1016/S0730-725X(98)00011-3
  7. Haacke EM, Filleti CL, Gattu R, Ciulla C, Al-Bashir A, Suryanarayanan K, et al. New algorithm for quantifying vascular changes in dynamic contrast-enhanced MRI independent of absolute T1 values. Magn Reson Med 2007;58:463-472 https://doi.org/10.1002/mrm.21358
  8. Yun TJ, Park CK, Kim TM, Lee SH, Kim JH, Sohn CH, et al. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology 2015;274:830-840 https://doi.org/10.1148/radiol.14132632
  9. Yu Y, Jiang Q, Miao Y, Li J, Bao S, Wang H, et al. Quantitative analysis of clinical dynamic contrast-enhanced MR imaging for evaluating treatment response in human breast cancer. Radiology 2010;257:47-55 https://doi.org/10.1148/radiol.10092169
  10. Riederer SJ, Suddarth SA, Bobman SA, Lee JN, Wang HZ, MacFall JR. Automated MR image synthesis: feasibility studies. Radiology 1984;153:203-206 https://doi.org/10.1148/radiology.153.1.6089265
  11. Warntjes JB, Dahlqvist O, Lundberg P. Novel method for rapid, simultaneous T1, T2*, and proton density quantification. Magn Reson Med 2007;57:528-537 https://doi.org/10.1002/mrm.21165
  12. Blystad I, Warntjes JB, Smedby O, Landtblom AM, Lundberg P, Larsson EM. Synthetic MRI of the brain in a clinical setting. Acta Radiol 2012;53:1158-1163 https://doi.org/10.1258/ar.2012.120195
  13. Kang KM, Choi SH, Hwang M, Yun TJ, Kim JH, Sohn CH. T1 shortening in the globus pallidus after multiple administrations of gadobutrol: assessment with a multidynamic multiecho sequence. Radiology 2018;287:258-266 https://doi.org/10.1148/radiol.2017162852
  14. Blystad I, Hakansson I, Tisell A, Ernerudh J, Smedby O, Lundberg P, et al. Quantitative MRI for analysis of active multiple sclerosis lesions without gadolinium-based contrast agent. AJNR Am J Neuroradiol 2016;37:94-100 https://doi.org/10.3174/ajnr.A4501
  15. Krauss W, Gunnarsson M, Andersson T, Thunberg P. Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging 2015;33:584-591
  16. Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 2013;266:801-811 https://doi.org/10.1148/radiol.12120278
  17. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr. NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 1999;9:531-538 https://doi.org/10.1002/(SICI)1522-2586(199904)9:4<531::AID-JMRI4>3.0.CO;2-L
  18. Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 2001;45:71-79 https://doi.org/10.1002/1522-2594(200101)45:1<71::AID-MRM1011>3.0.CO;2-2
  19. Lu H, Nagae-Poetscher LM, Golay X, Lin D, Pomper M, van Zijl PC. Routine clinical brain MRI sequences for use at 3.0 Tesla. J Magn Reson Imaging 2005;22:13-22 https://doi.org/10.1002/jmri.20356
  20. Wright PJ, Mougin OE, Totman JJ, Peters AM, Brookes MJ, Coxon R, et al. Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA 2008;21:121-130 https://doi.org/10.1007/s10334-008-0104-8
  21. Tanenbaum LN, Tsiouris AJ, Johnson AN, Naidich TP, DeLano MC, Melhem ER, et al. Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103-1110 https://doi.org/10.3174/ajnr.A5227
  22. Breger RK, Yetkin FZ, Fischer ME, Papke RA, Haughton VM, Rimm AA. T1 and T2 in the cerebrum: correlation with age, gender, and demographic factors. Radiology 1991;181:545-547 https://doi.org/10.1148/radiology.181.2.1924802
  23. Steen RG, Gronemeyer SA, Taylor JS. Age-related changes in proton T1 values of normal human brain. J Magn Reson Imaging 1995;5:43-48
  24. Cho S, Jones D, Reddick WE, Ogg RJ, Steen RG. Establishing norms for age-related changes in proton T1 of human brain tissue in vivo. Magn Reson Imaging 1997;15:1133-1143 https://doi.org/10.1016/S0730-725X(97)00202-6
  25. Tietze A, Mouridsen K, Mikkelsen IK. The impact of reliable prebolus T1 measurements or a fixed T1 value in the assessment of glioma patients with dynamic contrast enhancing MRI. Neuroradiology 2015;57:561-572 https://doi.org/10.1007/s00234-015-1502-z
  26. Nam JG, Kang KM, Choi SH, Lim WH, Yoo RE, Kim JH, et al. Comparison between the prebolus T1 measurement and the fixed T1 value in dynamic contrast-enhanced MR imaging for the differentiation of true progression from pseudoprogression in glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy. AJNR Am J Neuroradiol 2017;38:2243-2250 https://doi.org/10.3174/ajnr.A5417
  27. Larsson C, Kleppesto M, Grothe I, Vardal J, Bjornerud A. T1 in high-grade glioma and the influence of different measurement strategies on parameter estimations in DCE-MRI. J Magn Reson Imaging 2015;42:97-104 https://doi.org/10.1002/jmri.24772
  28. Conte GM, Altabella L, Castellano A, Cuccarini V, Bizzi A, Grimaldi M, et al. Comparison of T1 mapping and fixed T1 method for dynamic contrast-enhanced MRI perfusion in brain gliomas. Eur Radiol 2019;29:3467-3479 https://doi.org/10.1007/s00330-019-06122-x
  29. Li X, Cai Y, Moloney B, Chen Y, Huang W, Woods M, et al. Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling. J Magn Reson 2016;269:104-112
  30. Rata M, Collins DJ, Darcy J, Messiou C, Tunariu N, Desouza N, et al. Assessment of repeatability and treatment response in early phase clinical trials using DCE-MRI: comparison of parametric analysis using MR- and CT-derived arterial input functions. Eur Radiol 2016;26:1991-1998 https://doi.org/10.1007/s00330-015-4012-9
  31. You SH, Choi SH, Kim TM, Park CK, Park SH, Won JK, et al. Differentiation of high-grade from low-grade astrocytoma: improvement in diagnostic accuracy and reliability of pharmacokinetic parameters from DCE MR imaging by using arterial input functions obtained from DSC MR imaging. Radiology 2018;286:981-991 https://doi.org/10.1148/radiol.2017170764
  32. Zhang CE, Wong SM, Uiterwijk R, Backes WH, Jansen JFA, Jeukens CRLPN, et al. Blood-brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging. Brain Imaging Behav 2019;13:389-395 https://doi.org/10.1007/s11682-018-9855-7
  33. Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: review and consensus recommendations. Alzheimers Dement 2019;15:840-858 https://doi.org/10.1016/j.jalz.2019.01.013
  34. Cramer SP, Simonsen H, Frederiksen JL, Rostrup E, Larsson HB. Abnormal blood-brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neuroimage Clin 2013;10;4:182-189