DOI QR코드

DOI QR Code

Atomic Resolution Imaging of Rotated Bilayer Graphene Sheets Using a Low kV Aberration-corrected Transmission Electron Microscope

  • Ryu, Gyeong Hee (School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Park, Hyo Ju (School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Na Yeon (School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Zonghoon (School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2012.11.30
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

Modern aberration-corrected transmission electron microscope (TEM) with appropriate electron beam energy is able to achieve atomic resolution imaging of single and bilayer graphene sheets. Especially, atomic configuration of bilayer graphene with a rotation angle can be identified from the direct imaging and phase reconstructed imaging since atomic resolution Moir$\acute{e}$ pattern can be obtained successfully at atomic scale using an aberration-corrected TEM. This study boosts a reliable stacking order analysis, which is required for synthesized or artificially prepared multilayer graphene, and lets graphene researchers utilize the information of atomic configuration of stacked graphene layers readily.

Keywords

References

  1. Abergel D S L and Fal'ko V I (2007) Optical and magneto-optical far-infrared properties of bilayer graphene. Physical Review B 75, 155430-155434. https://doi.org/10.1103/PhysRevB.75.155430
  2. Banhart F, Kotakoski J, and Krasheninnikov A V (2011) Structural defects in graphene. ACS Nano 5, 26-41. https://doi.org/10.1021/nn102598m
  3. Bao W, Jing L, Velasco Jr J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Dronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, and Lau C N (2011) Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Physics 7, 948-952. https://doi.org/10.1038/nphys2103
  4. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
  5. Dato A, Radmilovic V, Lee Z, Phillips J, and Frenklach M (2008) Substratefree gas-phase synthesis of graphene sheets. Nano Letters 8, 2012- 2016. https://doi.org/10.1021/nl8011566
  6. FEI.com (2009) $Titan3^{TM}$ G2 60-300 [Internet]. Available from: http://www.fei.com/uploadedFiles/DocumentsPrivate/Content/titan_cubed_g2_ds.pdf.
  7. Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, and Zettl A (2011a) Multiply folded graphene. Physical Review B 83, 245433-245440. https://doi.org/10.1103/PhysRevB.83.245433
  8. Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, and Zettl A (2011b) Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142-2146. https://doi.org/10.1021/nn1033423
  9. Lee Z, Jeon K J, Dato A, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009a) Direct imaging of soft-hard interfaces enabled by graphene. Nano Letters 9, 3365-3369. https://doi.org/10.1021/nl901664k
  10. Lee Z, Dato A, Jeon K J, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009b) Atomic resolution imaging and spectroscopy of graphene using the TEAM 0.5. Microscopy & Microanalysis 15, 124- 125. https://doi.org/10.1017/S1431927609098985
  11. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. https://doi.org/10.1126/science.1171245
  12. Novoselov K S, Geim A K, Morzov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669. https://doi.org/10.1126/science.1102896
  13. Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K (2005) Two-dimensional atomic crystals. PNAS 102, 10451-1045. https://doi.org/10.1073/pnas.0502848102
  14. Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E (2006) Controlling the electronic structure of bilayer grapheme. Science 313, 951-954. https://doi.org/10.1126/science.1130681
  15. Park S and Ruoff R S (2009) Chemical methods for the production of graphenes. Nature Nanotechnology 4, 217-224. https://doi.org/10.1038/nnano.2009.58
  16. Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823. https://doi.org/10.1038/nature08105
  17. Zobelli A, Gloter A, Ewels C, Seifert G, and Colliex C (2007) Electron knockon cross section of carbon and boron nitride nanotubes. Physical Review B 75, 245402. https://doi.org/10.1103/PhysRevB.75.245402

Cited by

  1. Mechanism of Graphene Oxide Formation vol.8, pp.3, 2014, https://doi.org/10.1021/nn500606a
  2. Graphene synthesized in atmospheric plasmas—A review vol.34, pp.01, 2019, https://doi.org/10.1557/jmr.2018.470