References
- Abergel D S L and Fal'ko V I (2007) Optical and magneto-optical far-infrared properties of bilayer graphene. Physical Review B 75, 155430-155434. https://doi.org/10.1103/PhysRevB.75.155430
- Banhart F, Kotakoski J, and Krasheninnikov A V (2011) Structural defects in graphene. ACS Nano 5, 26-41. https://doi.org/10.1021/nn102598m
- Bao W, Jing L, Velasco Jr J, Lee Y, Liu G, Tran D, Standley B, Aykol M, Dronin S B, Smirnov D, Koshino M, McCann E, Bockrath M, and Lau C N (2011) Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Physics 7, 948-952. https://doi.org/10.1038/nphys2103
- Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, and Geim A K (2009) The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162. https://doi.org/10.1103/RevModPhys.81.109
- Dato A, Radmilovic V, Lee Z, Phillips J, and Frenklach M (2008) Substratefree gas-phase synthesis of graphene sheets. Nano Letters 8, 2012- 2016. https://doi.org/10.1021/nl8011566
-
FEI.com (2009)
$Titan3^{TM}$ G2 60-300 [Internet]. Available from: http://www.fei.com/uploadedFiles/DocumentsPrivate/Content/titan_cubed_g2_ds.pdf. - Kim K, Lee Z, Malone B D, Chan K T, Alemán B, Regan W, Gannett W, Crommie M F, Cohen M L, and Zettl A (2011a) Multiply folded graphene. Physical Review B 83, 245433-245440. https://doi.org/10.1103/PhysRevB.83.245433
- Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F, and Zettl A (2011b) Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142-2146. https://doi.org/10.1021/nn1033423
- Lee Z, Jeon K J, Dato A, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009a) Direct imaging of soft-hard interfaces enabled by graphene. Nano Letters 9, 3365-3369. https://doi.org/10.1021/nl901664k
- Lee Z, Dato A, Jeon K J, Erni R, Richardson T J, Frenklach M, and Radmilovic V (2009b) Atomic resolution imaging and spectroscopy of graphene using the TEAM 0.5. Microscopy & Microanalysis 15, 124- 125. https://doi.org/10.1017/S1431927609098985
- Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, and Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314. https://doi.org/10.1126/science.1171245
- Novoselov K S, Geim A K, Morzov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306, 666-669. https://doi.org/10.1126/science.1102896
- Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K (2005) Two-dimensional atomic crystals. PNAS 102, 10451-1045. https://doi.org/10.1073/pnas.0502848102
- Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E (2006) Controlling the electronic structure of bilayer grapheme. Science 313, 951-954. https://doi.org/10.1126/science.1130681
- Park S and Ruoff R S (2009) Chemical methods for the production of graphenes. Nature Nanotechnology 4, 217-224. https://doi.org/10.1038/nnano.2009.58
- Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, and Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823. https://doi.org/10.1038/nature08105
- Zobelli A, Gloter A, Ewels C, Seifert G, and Colliex C (2007) Electron knockon cross section of carbon and boron nitride nanotubes. Physical Review B 75, 245402. https://doi.org/10.1103/PhysRevB.75.245402
Cited by
- Mechanism of Graphene Oxide Formation vol.8, pp.3, 2014, https://doi.org/10.1021/nn500606a
- Graphene synthesized in atmospheric plasmas—A review vol.34, pp.01, 2019, https://doi.org/10.1557/jmr.2018.470