• 제목/요약/키워드: kNN분류기

검색결과 90건 처리시간 0.025초

기계학습을 기반으로 한 인터넷 학술문서의 효과적 자동분류에 관한 연구 (The Study on the Effective Automatic Classification of Internet Document Using the Machine Learning)

  • 노영희
    • 한국도서관정보학회지
    • /
    • 제32권3호
    • /
    • pp.307-330
    • /
    • 2001
  • 본 연구에서는 kNN분류기를 이용한 범주화 방법에 대한 성능 실험을 하였다. kNN분류기와 같은 대부분의 예제기반 자동 분류기법은 학습문서집단의 자질을 축소하게 되는데 자질을 몇 퍼센트 축소함으로써 높은 성능을 얻을 수 있는지를 알아보고자 하였다. 또한, kNN분류기는 학습문서집단에서 검증문서와 가장 유사한 k개의 학습문서를 찾아야 하는데, 이때 가장 적합한 k값은 얼마인지를 실험을 통하여 검증하여 보고자 하였다.

  • PDF

K_NN 분류기의 메모리 사용과 점진적 학습에 대한 연구 (A Study on the Storage Requirement and Incremental Learning of the k-NN Classifier)

  • 이형일;윤충화
    • 정보학연구
    • /
    • 제1권1호
    • /
    • pp.65-84
    • /
    • 1998
  • 메모리 기반 추론 기법은 분류시 입력 패턴과 저장된 패턴들 사이의 거리를 이용하는 교사 학습 기법으로써, 거리 기반 학습 알고리즘이라고도 한다. 메모리 기반 추론은 k_NN 분류기에 기반한 것으로, 학습은 추가 처리 없이 단순히 학습 패턴들을 메모리에 저장함으로써 수행된다. 본 논문에서는 기존의 k-NN 분류기보다 효율적인 분류가 가능하고, 점진적 학습 기능을 갖는 새로운 알고리즘을 제안한다. 또한 제안된 기법은 노이즈에 민감하지 않으며, 효율적인 메모리 사용을 보장한다.

  • PDF

문헌빈도와 장서빈도를 이용한 kNN 분류기의 자질선정에 관한 연구 (A Study on Feature Selection for kNN Classifier using Document Frequency and Collection Frequency)

  • 이용구
    • 한국도서관정보학회지
    • /
    • 제44권1호
    • /
    • pp.27-47
    • /
    • 2013
  • 이 연구에서는 자동 색인을 통해 쉽게 얻을 수 있는 자질의 문헌빈도와 장서빈도를 이용하여 자동분류에서 자질 선정 기법을 kNN 분류기에 적용하였을 때, 어떠한 분류성능을 보이는지 알아보고자 하였다. 실험집단으로 한국일보-20000(HKIB-20000)의 일부를 이용하였다. 실험 결과 첫째, 장서빈도를 이용하여 고빈도 자질을 선정하고 저빈도 자질을 제거한 자질선정 방법이 문헌빈도보다 더 좋은 성능을 가져오는 것으로 나타났다. 둘째, 문헌빈도와 장서빈도 모두 저빈도 자질을 우선으로 선정하는 방법은 좋은 분류성능을 가져오지 못했다. 셋째, 장서빈도와 같은 단순빈도에서 자질 선정 구간을 조정하는 것이 문헌빈도와 장서빈도의 조합보다 더 좋은 성능을 가져오는 것으로 나타났다.

키스트로크 인식을 위한 패턴분류 방법 (Pattern Classification Methods for Keystroke Identification)

  • 조태훈
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.956-961
    • /
    • 2006
  • 키스트로크 시간간격은 컴퓨터사용자의 검증 및 인식에서 분별적인 특징이 될 수 있다. 본 논문은 키스트로크 시간간격을 특징으로, 신경망의 역전파 알고리즘과 Bayesian 분류기, 그리고 k-NN을 이용한 분류기의 사용자 인식 성능을 비교 실험하였다. 실험 결과, 사용자당 샘플의 개수가 작을 경우에는 k-NN 알고리즘이 가장 성능이 좋았고, 사용자당 샘플의 개수가 많을 경우에는 Bayesian 분류기의 성능이 가장 뛰어난 결과를 보였다. 따라서 웹기반 온라인 사용자인식을 위해서는 사용자별 키스트로크 샘플의 수에 따라 k-NN이나 Bayesian 분류기를 선택적으로 사용하는 것이 바람직할 것으로 보인다.

자질 선정 기준과 가중치 할당 방식간의 관계를 고려한 문서 자동분류의 개선에 대한 연구 (An Empirical Study on Improving the Performance of Text Categorization Considering the Relationships between Feature Selection Criteria and Weighting Methods)

  • 이재윤
    • 한국문헌정보학회지
    • /
    • 제39권2호
    • /
    • pp.123-146
    • /
    • 2005
  • 이 연구에서는 문서 자동분류에서 분류자질 선정과 가중치 할당을 위해서 일관된 전략을 채택하여 kNN 분류기의 성능을 향상시킬 수 있는 방안을 모색하였다. 문서 자동 분류에서 분류자질 선정 방식과 자질 가중치 할당 방식은 자동분류 알고리즘과 함께 분류성능을 좌우하는 중요한 요소이다. 기존 연구에서는 이 두 방식을 결정할 때 상반된 전략을 사용해왔다. 이 연구에서는 색인파일 저장공간과 실행시간에 따른 분류성능을 기준으로 분류자질 선정 결과를 평가해서 기존 연구와 다른 결과를 얻었다. 상호정보량과 같은 저빈도 자질 선호 기준이나 심지어는 역문헌빈도를 이용해서 분류 자질을 선정하는 것이 kNN 분류기의 분류 효과와 효율 면에서 바람직한 것으로 나타났다. 자질 선정기준으로 저빈도 자질 선호 척도를 자질 선정 및 자질 가중치 할당에 일관되게 이용한 결과 분류성능의 저하 없이 kNN 분류기의 처리 속도를 약 3배에서 5배정도 향상시킬 수 있었다.

대표용어를 이용한 kNN 분류기의 처리속도 개선 (Improving Time Efficiency of kNN Classifier Using Keywords)

  • 이재윤;유수현
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2003년도 제10회 학술대회 논문집
    • /
    • pp.65-72
    • /
    • 2003
  • kNN 기법은 높은 자동분류 성능을 보여주지만 처리 속도가 느리다는 단점이 있다. 이를 극복하기 위해 입력문서의 대표용어 w개를 선정하고 이를 포함한 학습문서만으로 학습집단을 축소함으로써 자동분류 속도를 향상시키는 kw_kNN을 제안하였다. 실험 결과 대표 용어를 5개 사용할 경우에는 kNN 대비 문서간 비교횟수를 평균 18.4%로 축소할 수 있었다. 그러면서도 성능저하를 최소화하여 매크로 평균 F1 척도면에서는 차이가 없고 마이크로 평균정확률 면에서는 약 l∼2% 포인트 이내로 kNN 기법의 성능에 근접한 결과를 얻었다.

  • PDF

GAVaPS를 이용한 다수 K-Nearest Neighbor classifier들의 Feature 선택 (Feature Selection for Multiple K-Nearest Neighbor classifiers using GAVaPS)

  • 이희성;이제헌;김은태
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.871-875
    • /
    • 2008
  • 본 논문은 개체 변환 유전자 알고리즘을 (GAVaPS) 이용하여 k-nearest neighbor (k-NN) 분류기에서 사용되는 특징들을 선정하는 방법을 제시한다. 우리는 다수의 k-NN 분류기들을 사용하기 때문에 사용되는 특징들을 선정하는 문제는 매우 탐색 영역이 크고 해결하기 어려운 문제이다. 따라서 우리는 효과적인 특징득의 선정을 위해 일반적인 유전자 알고리즘 (GA) 보다 효율적이라고 알려진 개체군 변환 유전자 알고리즘을 사용한다. 또한 다수 k-NN 분류기를 개체군 변환 유전자 알고리즘으로 효과적으로 결합하는 방법을 제시한다. 제안하는 알고리즘의 우수성을 여러 실험을 통해 보여준다.

텍스트 마이닝 기법을 이용한 컴퓨터 네트워크의 침입 탐지 (Using Text Mining Techniques for Intrusion Detection Problem in Computer Network)

  • 오승준;원민관
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.27-32
    • /
    • 2005
  • 최근 들어 데이터 마이닝 기법을 컴퓨터 네트워크의 침입 탐지에 적용하려는 많은 연구가 진행되고 있다. 본 논문에서는 침입 탐지 분야에서 프로그램 행위가 정상적인지 비정상적인지를 분류하기 위한 방법을 연구한다. 이를 위해, 택스트 마이닝 기법중의 하나인 k 최근접 이웃 (kNN) 분류기를 이용한 새로운 방법을 제안한다. 본 논문에서는 택스트 분류 기법을 적용하기 위해 각각의 시스템 호출을 단어로 간주하고, 시스템 호출의 집합들을 문서로 간주한다. 이러한 문서들은 kNN 분류기를 이용하여 분류된다. 간단한 예제를 통하여 제안하는 절차를 소개한다.

  • PDF

목차 정보와 kNN 분류기를 이용한 사회과학 분야 도서 자동 분류에 관한 연구 (A Study on Book Categorization in Social Sciences Using kNN Classifiers and Table of Contents Text)

  • 이용구
    • 정보관리학회지
    • /
    • 제37권1호
    • /
    • pp.1-21
    • /
    • 2020
  • 이 연구에서는 한 대학도서관의 신착 도서 리스트 중 사회 과학 분야 6,253권에 대해 목차 정보를 이용하여 자동 분류를 적용하였다. 분류기는 kNN 알고리즘을 사용하였으며 자동 분류의 범주로 도서관에서 도서에 부여한 DDC 300대 강목을 사용하였다. 분류 자질은 도서의 서명과 목차를 사용하였으며, 목차는 인터넷 서점으로부터 Open API를 통해 획득하였다. 자동 분류 실험 결과, 목차 자질은 분류 재현율과 분류 정확률 모두를 향상시키는 좋은 자질임을 알 수 있었다. 또한 목차는 풍부한 자질로 불균형인 데이터의 과적합 문제를 완화시키는 것으로 나타났다. 법학과 교육학은 사회 과학 분야에서 특정성이 높아 서명 자질만으로도 좋은 분류 성능을 가져오는 점도 파악할 수 있었다.

음성 신호를 이용한 화자의 5가지 감성 인식 (Recognizing Five Emotional States Using Speech Signals)

  • 강봉석;한철희;우경호;양태영;이충용;윤대희
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.101-104
    • /
    • 1999
  • 본 논문에서는 음성 신호를 이용해서 화자의 감정을 인식하기 위해 3가지 시스템을 구축하고 이들의 성능을 비교해 보았다. 인식 대상으로 하는 감정은 기쁨, 슬픔, 화남, 두려움, 지루함, 평상시의 감정이고, 각 감정에 대한 감정 음성 데이터베이스를 직접 구축하였다. 피치와 에너지 정보를 감성 인식의 특징으로 이용하였고, 인식 알고리듬은 MLB(Maximum-Likelihood Bayes)분류기, NN(Nearest Neighbor)분류기 및 HMM(Hidden Markov Model)분류기를 이용하였다. 이 중 MLB 분류기와 NN 분류기에서는 특징벡터로 피치와 에너지의 평균과 표준편차, 최대값 등 통계적인 정보를 이용하였고, TMM 분류기에서는 각 프레임에서의 델타 피치와 델타델타 피치, 델타 에너지와 델타델타 에너지 등 시간적 정보를 이용하였다. 실험은 화자종속, 문장독립형 방식으로 하였고, 인식 실험 결과는 MLB를 이용해서 $68.9\%, NN을 이용해서 $66.7\%를 얻었고, HMM 분류기를 이용해서 $89.30\%를 얻었다.

  • PDF