• Title/Summary/Keyword: k-ideal

Search Result 3,956, Processing Time 0.03 seconds

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

ON THE PRINCIPAL IDEAL THEOREM

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.655-660
    • /
    • 1999
  • Let R be an integral domain with identity. In this paper we will show that if R is integrally closed or if t-dim $R{\leq}1$, then R[{$X_{\alpha}$}] satisfies the principal ideal theorem for each family {$X_{\alpha}$} of algebraically independent indeterminates if and only if R is an S-domain and it satisfies the principal ideal theorem.

  • PDF

INTEGRAL DOMAINS WITH FINITELY MANY STAR OPERATIONS OF FINITE TYPE

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.20 no.2
    • /
    • pp.185-191
    • /
    • 2012
  • Let D be an integral domain and SF(D) be the set of star operations of finite type on D. We show that if ${\mid}SF(D){\mid}$ < ${\infty}$, then every maximal ideal of D is a $t$-ideal. We give an example of integrally closed quasi-local domains D in which the maximal ideal is divisorial (so a $t$-ideal) but ${\mid}SF(D){\mid}={\infty}$. We also study the integrally closed domains D with ${\mid}SF(D){\mid}{\leq}2$.

1-(2-) Prime Ideals in Semirings

  • Nandakumar, Pandarinathan
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.117-122
    • /
    • 2010
  • In this paper, we introduce the concepts of 1-prime ideals and 2-prime ideals in semirings. We have also introduced $m_1$-system and $m_2$-system in semiring. We have shown that if Q is an ideal in the semiring R and if M is an $m_2$-system of R such that $\overline{Q}{\bigcap}M={\emptyset}$ then there exists as 2-prime ideal P of R such that Q $\subseteq$ P with $P{\bigcap}M={\emptyset}$.

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

The Fuzzy Jacobson Radical of a κ-Semiring

  • Kim, Chang-Bum
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.423-429
    • /
    • 2007
  • We define and study the fuzzy Jacobson radical of a ${\kappa}$-semiring. Also it is shown that the Jacobson radical of the quotient semiring R/FJR(R) of a ${\kappa}$-semiring by the fuzzy Jacobson radical FJR(R) is semisimple. And the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from R onto S are also discussed.

Ideal Theory in Commutative A-semirings

  • Allen, Paul J.;Neggers, Joseph;Kim, Hee Sik
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.261-271
    • /
    • 2006
  • In this paper, we investigate and characterize the class of A-semirings. A characterization of the Thierrin radical of a proper ideal of an A-semiring is given. Moreover, when P is a Q-ideal in the semiring R, it is shown that P is primary if and only if R/P is nilpotent.

  • PDF

Subalgebras and Ideals of BCK/BCI-Algebras in the Frame-work of the Hesitant Intersection

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.371-386
    • /
    • 2016
  • Using the hesitant intersection (${\Cap}$), the notions of ${\Cap}$-hesitant fuzzy subalgebras, ${\Cap}$-hesitant fuzzy ideals and ${\Cap}$-hesitant fuzzy p-ideals are introduced,and their relations and related properties are investigated. Conditions for a ${\Cap}$-hesitant fuzzy ideal to be a ${\Cap}$-hesitant fuzzy p-ideal are provided. The extension property for ${\Cap}$-hesitant fuzzy p-ideals is established.

PITCH EXTRACTION USING AN APROXIMATELY IDEAL LOW-PASS FILTER

  • Matsuoka, T.;Sugama, A.;Onodera, E.;Ishida, Y.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.931-936
    • /
    • 1994
  • Although an ideal low-pass filter is not physically realizable, it can be approximated on the basis of time reversal techniques. In this paper, we describe a method to approximately implement the ideal low-pass filter and apply it to the pitch extraction system. Experimental results show that our method is effective to estimate the fundamental frequency of the speech signal.

  • PDF

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.