The Fuzzy Jacobson Radical of a k-Semiring

Chang Bum Kim

Department of Mathematics, Kookmin University, Seoul 136-702, Korea.

Abstract

We define and study the fuzzy Jacobson radical of a k-semiring. Also it is shown that the Jacobson radical of the quotient semiring R/FJR(R) of a k- semiring by the fuzzy Jacobson radical FJR(R) is semisimple. And the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from R onto S are also discussed.

Key words: k— semiring, k—ideal, fuzzy ideal, fuzzy cosets of a fuzzy ideal, fuzzy maximal(semiprime, prime) ideal, quotient semiring, fuzzy Jacobson radical.

1. Introduction

Chun, Kim and Kim [2] constructed an extension of a k-semiring and studied a k-ideal of a k-semiring. The first author et al.[3] constructed the quotient semiring of a k-semiring by a k-ideal. Liu [14] introduced and studied the notion of fuzzy ideal of a ring. Following Liu, Mukherjee and Sen [17] defined and examined fuzzy prime ideals of a ring. Kumbhojkar and Bapat [6,7] defined studied the ring R/J of the cosets of the fuzzy ideal J.

Kumar [8]-[12] extended the concept of fuzzy ideal to fuzzy semiprimary (semiprime, primary, prime, maximal) ideals in a ring. Also Malik and Mordeson [15] gave the necessary and sufficient conditions for a fuzzy subring or a fuzzy ideal A of a commutative ring R to be extended to one A^e of a commutative ring R containing R as a subring.

In particular, Kuraoki and Kuroki [13] defined fuzzy quotient rings and gave homomorphism theorems and isomorphism theorem as to fuzzy ideals.

Kim and Park [4] defined and studied the notion of the k-fuzzy ideal in a semiring, and they also introduced and studied the quotient semiring R/A of a k-semiring R by a k-fuzzy ideal A.

Kim [5] defined and investigated a fuzzy maximal ideal of a k-semiring and also characterized the quotient k-semiring R/A of a k-semiring R by a fuzzy maximal ideal A.

Furthermore, Kumar [10] defined and studied the fuzzy Jacobson radical FJR(R) and the fuzzy prime radical FPR(R) of a ring R.

The purpose of this paper is to define and study the fuzzy Jacobson radical $\mathrm{FJR}(R)$ of a k- semiring R. In particular, we show that the Jacobson radical of the quotient semiring $R/\mathrm{FJR}(R)$ of a k-semiring R by the fuzzy

Jacobson radical FJR(R) is semisimple, and we also discuss the algebraic properties of the fuzzy ideals FJR(R) and FJR(S) under a homomorphism from a k-semiring R onto a k-semiring S.

2. Preliminaries

In this section, we review some definitions and some results which will be used in the later sections.

Definition 2.1. ([2]). A set R together with associative binary operations called addition and multiplication (denoted by + and · respectively) will be called a semiring provided:

- (1) addition is a commutative operation,
- (2) there exists $0 \in R$ such that x + 0 = x and x0 = 0x = 0 for each $x \in R$,

and

(3) multiplication distributes over addition both from the left and the right.

Definition 2.2. ([2]). A semiring R will be called a k-semiring if for any $a, b \in R$ there exists a unique element c in R such that either b = a + c or a = b + c but not both.

Definition 2.3. ([3]). A non-empty subset I of a semiring R is called a subsemiring if I is itself a semiring with respect to the binary operations defined in R. A subsemiring I is called an ideal of R if $r \in R$ and $a \in I$ imply $ar \in I$ and $ra \in I$.

Definition 2.4. ([3]). An ideal I of a semiring R is called a k-ideal if $r + a \in I$ implies $r \in I$ for each $r \in R$ and each $a \in I$.

접수일자: 2006년 11월 24일 완료일자: 2007년 4월 25일

본 연구는 2007년도 국민대학교 교내연구비로 수행되었렴.

Let R be a k-semiring. Let R' be a set of the same cardinality with $R-\{0\}$ such that $R\cap R'=\emptyset$ and let denote the image of $a\in R-\{0\}$ under a given bijection by a'. Let \oplus and \odot denote addition and multiplication respectively on a set $\bar{R}=R\cup R'$ as follows:

$$a \oplus b = \begin{cases} a+b & \text{if } a,b \in R \\ (x+y)' & \text{if } a=x',b=y' \in R' \\ c & \text{if } a \in R,b=y' \in R',a=y+c \\ c' & \text{if } a \in R,b=y' \in R',a+c=y, \end{cases}$$

where c is the unique element in R such that either a=y+c or a+c=y but not both, and

$$a \odot b = \begin{cases} ab & \text{if } a, b \in R \\ xy & \text{if } a = x', b = y' \in R' \\ (ay)' & \text{if } a \in R, b = y' \in R' \\ (xb)' & \text{if } a = x' \in R', b \in R, \end{cases}$$

It can be shown that these operations are well defined and thus if R is a k-semiring, then (\bar{R}, \oplus, \odot) is a ring, called the extension ring of R.

Remark 2.5. Let $\ominus a$ denote the additive inverse of any element $a \in R$ and write $a \ominus (\ominus b)$ simply as $a \ominus b$. Then it is clear that $a' = \ominus a$ and $a = \ominus a'$ for all $a \in R$. Note that if R is a k-semiring with identity, then \bar{R} is a ring with identity.

Theorem 2.6. ([2]). Let R be a k-semiring, I an ideal, and $I' = \{a' \in R' | a \in I\}$. Then I is a k-ideal of R if and only if $\tilde{I} = I \cup I'$ is an ideal of the extension ring \bar{R} , called the extension ideal of I.

Note that if R is a k-semiring and \bar{R} is the extension ring of R, then each ideal of \bar{R} is the extension ideal of a k-ideal of R and each k-ideal of R is the intersection of its extension ideal and R (see [2]).

Let R be a k-semiring and \bar{R} its extension ring. Let I be a k-ideal of R and \bar{I} its extension ideal of \bar{R} . Define a relation $a\equiv b$ by $a\oplus b'\in \bar{I}$, where $a,b\in R$. Then this relation is an equivalence relation on R. Let $a\oplus I$ be the equivalence class containing $a\in R$ determined by \equiv . Let $R/I=\{a\oplus I|a\in R\}$ be the set of all equivalence classes determined by \equiv . Then $R/I=\{a\oplus I|a\in R\}$ is a k-semiring under the two operations $(a\oplus I)\oplus (b\oplus I)=(a+b)\oplus I$ and $(a\oplus I)\odot (b\oplus I)=(ab)\oplus I$ (see [3]).

Definition 2.7. ([3]). A mapping f from a k-semiring R into a k-semiring S is called a homomorphism if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$.

Theorem 2.8. ([3]). Let $f: R \rightarrow S$ be a k-semiring homomorphism. Let \bar{R} and \bar{S} be the extension rings of R and S respectively. Define a map $\bar{f}: \bar{R} \rightarrow \bar{S}$ by

$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } x \in R \\ f(x')' & \text{if } x \in R' \end{cases}$$

Then \bar{f} is a ring homomorphism, called an extension ring homomorphism of f.

Definition 2.9. ([2]). A k- ideal I of a k-semiring R is maximal provided that $I \neq R$ and whenever J is a k-ideal of R with $I \subset J \subsetneq R$ then I = J.

Theorem 2.10. ([2]). Let \bar{R} be the extension ring of a commutative k- semiring with identity, I a k-ideal of R and \bar{I} the extension ideal of I in \bar{R} . Then I is a maximal k-ideal of R iff \bar{I} is a maximal ideal of \bar{R} .

Definition 2.11. Let R be a k-semiring and \bar{R} the extension ring of R. The intersection of all maximal ideals of R is called the Jacobson radical of R, denoted by JR(R).

Theorem 2.12. Let R be a k-semiring and \bar{R} the extension ring of R. Then $JR(R) = JR(\bar{R}) \cap R$.

Proof.

$$\begin{array}{ll} JR(R) &=& \bigcap\{M_i \mid M_i \text{ is a maximal k-ideal of } R\} \\ &=& \bigcap\{\tilde{M}_i \cap R \mid \bar{M}_i \text{ is a maximal ideal of } \bar{R}\} \\ &=& \bigcap\{\tilde{M}_i \mid \bar{M}_i \text{ is a maximal ideal of } \bar{R}\} \cap R \\ &=& JR(\bar{R}) \cap R. \end{array}$$

Definition 2.13. Let R be a k-semiring. If $JR(R)=\{0\}$, then R is said to be a semisimple k-semiring.

3. Fuzzy ideals of a k-semiring

In this section, we review some definitions and some properties of the fuzzy ideals of commutative k- semirings with identity. Throughout this paper unless otherwise all semirings are commutative k-semirings with identity.

Definition 3.1. ([4]). A fuzzy ideal of a semiring R is a function $A: R \rightarrow [0, 1]$ satisfying the following conditions:

(1)
$$A(x+y) \ge \min\{A(x), A(y)\}$$

(2)
$$A(xy) \ge \max\{A(x), A(y)\}\$$
 for all $x, y \in R$

Theorem 3.2. ([4]). Let A be a fuzzy ideal of a semiring R. Then $A(x) \le A(0)$ for all $x \in R$.

Definition 3.3. ([4]). Let A be a fuzzy subset of a semiring R. Then the set $A_t = \{x \in R | A(x) \ge t\} (t \in [0,1])$ is called the level subset of R with respect to A.

Theorem 3.4. ([4]). Let A be a fuzzy ideal of a semiring R. Then the level subset $A_t(t \le A(0))$ is the ideal of R.

In general, It is not true that if A is a fuzzy ideal of a semiring R, then $A_t(t \leq A(0))$ is k-ideal of R, for we have the following example.

424

Example 3.5. ([4]). Let $R = Z^*$, the set of nonnegative integers and let I=(2,3) be an ideal of R generated by 2 and 3. Define a fuzzy subset A of R by

$$A(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{if } x \notin I \end{cases}$$

Then A is a fuzzy ideal but $A_R = I$ is not a k-ideal of R.

Definition 3.6. ([15]). Let $f: R \to S$ be a homomorphism of semirings and B a fuzzy subset of S. We define a fuzzy subset $f^{-1}B$ of R by $f^{-1}B(x) = B(f(x))$ for all $x \in R$.

Definition 3.7. ([19]). Let $f: R \to S$ be a homomorphism of semirings and A a fuzzy subset of R. We define a fuzzy subset f(A) of S by

$$f(A)(y) = \begin{cases} \sup\{A(t)|t \in R, f(t) = y\} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

Definition 3.8. ([14]). A fuzzy ideal of a ring R is a function $A: R \rightarrow [0, 1]$ satisfying the following axioms

- (1) $A(x+y) \ge \min\{A(x), A(y)\}$
- $(2) A(xy) \ge \max\{A(x), A(y)\}$
- (3) A(-x) = A(x)

Let R be a commutative k-semiring, \bar{R} its extension ring. If A is a fuzzy ideal of R such that all its level subsets are k-ideals of R, then $R = \bigcup\limits_{t \in \mathrm{Im}A} A_t$, $\bar{R} = \bigcup\limits_{t \in \mathrm{Im}A} \bar{A}_t$, and s > t if and only if $A_s \subset A_t$ if and only if $\bar{A}_s \subset \bar{A}_t$. Thus we have the following theorem.

Theorem 3.9. ([4]). Let R be a commutative k-semiring, \bar{R} its extension ring. Let A be a fuzzy ideal of R such that all its level subsets are k-ideals of R. Define the fuzzy subset \bar{A} of \bar{R} by for all $x \in \bar{R}$, $\bar{A}(x) = \sup\{t | x \in \bar{A}_t, t \in \text{Im}A\}$. Then \bar{A} is a fuzzy ideal of \bar{R} .

Theorem 3.10. ([4]). Let A be as in Theorem 3-9. Then \overline{A} is an extension of A.

Definition 3.11. ([4]). Let A be as in Theorem 3-9 and let \bar{A} be the extension ideal of A The fuzzy subset $x+A: R{\rightarrow}[0,1]$ defined by $(x+A)(z)=\bar{A}(z{\oplus}x')$ is called a coset of the fuzzy ideal A.

Theorem 3.12. ([4]). Let R, \bar{R} , A and \bar{A} be as in Theorem 3-9. Then x+A=y+A $(x,y{\in}R)$ if and only if $\bar{A}(x{\oplus}y')=A(0)$.

Theorem 3.13. ([4]). Let A be as in Theorem 3-9 and \overline{A} the extension of A. If x+A=u+A and $y+A=v+A(x,y,u,v\in R)$, then

- (1) x + y + A = u + v + A
- (2) xy + A = uv + A

Theorem 3-13 allows us to define two binary operation "+" and " \cdot " on the set R/A of cosets of the fuzzy ideal A as follows:

$$\begin{array}{rcl} (x+A)+(y+A) & = & x+y+A \\ & \text{and} \\ (x+A)\cdot(y+A) & = & xy+A \end{array}$$

It is easy to show that R/A is a k-semiring under these well-defined binary operations with additive identity A and multiplicative identity 1+A. In this case, the semiring R/A is called the factor semiring or the quotient semiring of R by A.

Theorem 3.14. Let R, \bar{R} , A and \bar{A} be as in Theorem 3-9. Then $\overline{R/A} \cong \bar{R}/\bar{A}$.

Definition 3.15. ([12]). A fuzzy ideal A of R is called a fuzzy prime if $\forall a, b \in R$, either A(ab) = A(a) or else A(ab) = A(b).

Definition 3.16. ([12]). A fuzzy ideal A of R is called a fuzzy semiprime if $A(a^m) = A(a), \forall a \in \mathbb{R}$ and $\forall m \in \mathbb{Z}_+$.

Definition 3.17. ([5]). Let A be a fuzzy ideal of a k-semiring R such that all its level subsets are k-ideals of R. A fuzzy ideal A of R is called a fuzzy maximal if $(i)A(0)=1;(ii)A(e_R)< A(0);$ and (iii) whenever A(b)< A(0) for some $b\in R$, then $\bar{A}(e_R\oplus (rb)')=A(0)$ for some $r\in R$, where e_R is identity of R.

Let $R=Z^*$, the set of nonnegative integers. Define a fuzzy subset α of R by

$$\alpha(x) = \begin{cases} 1 & \text{if } x \in (2) \\ s & \text{if } x \notin (2) \text{ for } s \in [0, 1) \end{cases}$$

Then α is a fuzzy maximal ideal of R.

Kumar[10] defined the fuzzy maximal ideal of a ring as follow;

Definition 3.18. ([10]). A fuzzy ideal A of a ring R is called fuzzy maximal if $(i)A(0)=1; (ii)A(e_R)< A(0);$ and (iii) whenever A(b)< A(0) for some $b\in R$, then $A(e_R-rb)=A(0)$ for some $r\in R$.

In the following theorem, we have the relation between the fuzzy maximal ideal of a k-semiring and the fuzzy maximal ideal of a ring.

Theorem 3.19. ([5]). Let A be as in Definition 3-17, \bar{A} its extension and \bar{R} the extension ring of R. Then A is a fuzzy maximal ideal of R iff \bar{A} is a fuzzy maximal ideal of \bar{R} .

Theorem 3.20. ([5]). Let $f: R \longrightarrow S$ be an epimorphism of k-semirings and B a fuzzy ideal of S. Then B is a fuzzy maximal ideal of S iff $f^{-1}B$ is a fuzzy maximal ideal of R.

4. The fuzzy Jacobson radical of a k-semiring

In this section, we define the fuzzy Jacobson radical FJR(R) of a k-semiring R and have some properties of the quotient ring R/FJR(R) of R by the fuzzy Jacobson radical FJR(R), and obtain some algebraic properties of FJR(R) and FJR(S) under a homomorphism from a k-semiring R onto a k-semiring S.

Kumar[10] defined the fuzzy Jacobson radical FJR(R) of a ring R as follows : FJR(R) = $\cap \{\theta \mid \theta \text{ is a fuzzy maximal ideal of } R\}$. Similarly, we define a fuzzy Jacobson radical of a k-semiring.

Definition 4.1. Let R be a k-semiring. The intersection of all fuzzy maximal ideals of R is called the fuzzy Jacobson radical of R, denoted by FJR(R).

Theorem 4.2. Let α and β be fuzzy ideals of a k-semiring R such that all its level subsets are k-ideals of R. Then $\alpha \cap \beta$ is a fuzzy ideal of R such that all its level subsets are k-ideals of R.

Proof. Let $(\alpha \cap \beta)(x+y) \geq t$ and $(\alpha \cap \beta)(y) \geq t$. for each $t \in [0,1]$. Then $\alpha(x+y) \geq t$ and $\beta(x+y) \geq t$. But $(\alpha \cap \beta)(y) \geq t$. Thus $\alpha(y) \geq t$ and $\beta(y) \geq t$. Since α and β are fuzzy ideals of R such that all its level subsets are k-ideals of R, we have $\alpha(x) \geq t$ and $\beta(x) \geq t$. Hence $(\alpha \cap \beta)(x) = \min\{\alpha(x), \beta(x)\} \geq t$. This completes the proof.

Theorem 4.3. Let α and β be fuzzy ideals of a k-semiring R such that all its level subsets are k-ideals of R. Then $\alpha \cap \beta = \overline{\alpha} \cap \overline{\beta}$.

Proof. Let x be any element of \bar{R} . If $x \in R$, then

$$\begin{array}{rcl} (\bar{\alpha} \cap \bar{\beta})(x) & = & \min\{\bar{\alpha}(x), \bar{\beta}(x)\} \\ & = & \min\{\alpha(x), \beta(x)\} \\ & = & (\alpha \cap \beta)(x) \\ & = & \overline{\alpha \cap \beta}(x). \end{array}$$

If $x \in R'$ and let $x = y'(y \in R)$. Then

$$\begin{array}{rcl} (\bar{\alpha}\cap\bar{\beta})(x) &\coloneqq & (\bar{\alpha}\cap\bar{\beta})(y') \\ &\coloneqq & \min\{\bar{\alpha}(y'),\bar{\beta}(y')\} \\ &\coloneqq & \min\{\bar{\alpha}(y),\bar{\beta}(y)\} \\ &\coloneqq & (\alpha\cap\beta)(y) \\ &\coloneqq & \overline{\alpha\cap\beta}(y') \\ &\coloneqq & \overline{\alpha\cap\beta}(x). \end{array}$$

Hence $\widehat{\alpha \cap \beta}(x) = (\bar{\alpha} \cap \bar{\beta})(x)$ for all $x \in \bar{R}$.

Theorem 4.4. Let R be a k-semiring and \bar{R} the extension ring of R. If A be a fuzzy maximal ideal of \bar{R} , then there exists a fuzzy maximal ideal α of R such that $\bar{\alpha} = A$.

Proof. Let α be the restriction $A_{|R}$ of A to R. For each $t \in [0,1]$, let $x+y \in \alpha_t$, and $y \in \alpha_t$, then $\alpha(x+y) \geq t$ and $\alpha(y) \geq t$. So $A(x+y) \geq t$ and $A(y) \geq t$, which implies that $x+y \in A_t$ and $y \in A_t$. Since A_t is an ideal of \bar{R} , $x \in A_t$. Thus $A(x) \geq t$ and thus $\alpha(x) \geq t$. So $x \in \alpha_t$. Hence α_t is a k-ideal of R for all $t \in [0,1]$ and hence $\bar{\alpha} = A$. On the other hand, by Theorem 3-19, α is a fuzzy maximal ideal of R. This completes the proof. \Box

Lemma 4.5. Let R be a k-semiring and \bar{R} the extension ring of R. Let FMI(R) be the collection of all fuzzy maximal ideals of R and $FMI(\bar{R})$ the collection of all fuzzy maximal ideals of \bar{R} . Then a mapping $f: FMI(R) \longrightarrow FMI(\bar{R})$ defined by $f(\alpha) = \bar{\alpha}$ is bijective.

Proof. Let $f(\alpha) = f(\beta)$. Then $\bar{\alpha} = \bar{\beta}$ and $\alpha = \beta$. Thus f is one-one. Let A be any element of $FMI(\bar{R})$. Then by Theorem 4-4, there exists an element $\alpha \in FMI(R)$ such that $\bar{\alpha} = A$. Thus $f(\alpha) = \bar{\alpha} = A$. Hence f is onto. This completes the proof.

Theorem 4.6. Let R be a k-semiring and \bar{R} the extension ring of R. Then $\overline{\text{FJR}(R)} = \text{FJR}(\bar{R})$.

Proof. By Theorem 4-3 and Lemma 4-5,

$$\overline{\mathrm{FJR}(R)} = \bigcap \{\alpha \mid \alpha \text{ is a fuzzy maximal ideal of } R\}$$

$$= \bigcap \{\bar{\alpha} \mid \bar{\alpha} \text{ is a fuzzy maximal ideal of } \bar{R}\}$$

$$= \mathrm{FJR}(\bar{R}).$$

Theorem 4.7. ([10]). Let R be a commutative ring with identity and let $\mu = \text{FJR}(R)$. Then R/μ is semisimple.

Similarly, we have the following theorem.

Theorem 4.8. Let R be a k-semiring and let $\mu = FJR(R)$. Then R/μ is semisimple.

Proof.

$$JR(R/\mu) = JR(\overline{R/\mu}) \cap R/\mu$$
 by Theorem [2-12]
= $JR(\bar{R}/\bar{\mu}) \cap R/\mu$ by Theorem [3-14]
= $\{0\} \cap R/\mu$ by Theorem[4-7]

Lemma 4.9. ([10]). If μ is any fuzzy ideal of a commutative ring with identity R, then $\mu(x-y)=\mu(0) \iff x+\mu=y+\mu$ for any $x,y\in R$.

426

Theorem 4.10. ([10]). Let R be a commutative ring with identity and let $\theta = \text{FJR}(R)$. Then $a \in R$ is invertible iff $a + \theta$ is invertible.

Theorem 4.11. Let R be a k- semiring with $e \neq 0$ and let $\mu = \mathrm{FJR}(R)$. Then a is invertible in R iff $a+\mu$ is invertible in R/μ .

Proof. Suppose that a is invertible in R. Then there exists b in R such that ab=e. Thus $ab+\mu=(a+\mu)(b+\mu)=e+\mu$, so that $a+\mu$ is invertible in R/μ . Conversely suppose that $a+\mu$ is invertible in R/μ . Then there exists $b+\mu\in R/\mu$ such that $(a+\mu)(b+\mu)=(ab+\mu)=(e+\mu)$. Thus $\bar{\mu}(ab\oplus e')=\mu(0)=\bar{\mu}(0)$, and thus $(ab+\bar{\mu})=(e+\bar{\mu})$ by Lemma 4-9, which implies that $a+\bar{\mu}$ is invertible in $\bar{R}/\bar{\mu}$. Hence a is invertible in \bar{R} by Theorem 4-10 and hence there exists $c\in\bar{R}$ such that ac=e. If $c\in R'$, where $R'=\{x'|x\in R\}$, then $ac\in R'$ and $e\in R$. Since $R\cap R'=\{0\}, e=0$. This is impossible. Therefore $c\in R$, which completes the proof.

Theorem 4.12. Let α be a fuzzy maximal ideal of a k-semiring R. Then α is a fuzzy semiprime ideal of R.

Proof. If α is a fuzzy maximal ideal of a k-semiring R, then by Theorem 3-19, $\bar{\alpha}$ is a fuzzy maximal ideal of the extension ring \bar{R} . Thus $\bar{\alpha}$ is a fuzzy prime ideal of \bar{R} and thus α is a fuzzy prime ideal of R. Hence α is a fuzzy semiprime ideal of R.

Theorem 4.13. If α and β be fuzzy semiprime ideals of R, then $\alpha \cap \beta$ is a fuzzy semiprime ideal of R.

Proof. For all $x \in R$ and all $n \in \mathbb{Z}_+$, we have $(\alpha \cap \beta)(x^n) = \min \{\alpha(x^n), \beta(x^n)\} = \min \{\alpha(x), \beta(x)\} = (\alpha \cap \beta)(x)$. So $\alpha \cap \beta$ is fuzzy semiprime ideal of R. \square

From Theorem 4-12 and Theorem 4-13, we have the following.

Corollary 4.14. If R is a k-semiring, then FJR(R) is a fuzzy semiprime ideal of R.

Lemma 4.15. Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S. Let β_1 and β_2 be fuzzy ideals of S. Then $\varphi^{-1}(\beta_1 \cap \beta_2) = \varphi^{-1}\beta_1 \cap \varphi^{-1}\beta_2$.

Proof. For every $x \in R$, we have

$$\varphi^{-1}(\beta_1 \cap \beta_2)(x) = (\beta_1 \cap \beta_2)(\varphi(x))$$

$$= \min \{\beta_1 \varphi(x), \beta_2 \varphi(x)\}$$

$$= \min \{\varphi^{-1}\beta_1(x), \varphi^{-1}\beta_2(x)\}$$

$$= (\varphi^{-1}\beta_1 \cap \varphi^{-1}\beta_2)(x).$$

This completes the proof.

Lemma 4.16. Let α and β be fuzzy ideals of a k-semiring R. Then $(\alpha \cap \beta)_t = \alpha_t \cap \beta_t$ for all $t \in [0, 1]$.

Lemma 4.17. Let α and β be fuzzy ideals of a k-semiring R. If α_t and β_t are k- ideals of R for all $t \in [0,1]$, then $\alpha_t \cap \beta_t$ is a k- ideal of R.

Theorem 4.18. Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S. Then $\varphi^{-1}(\mathrm{FJR}(S)) \supseteq \mathrm{FJR}(R)$.

Proof.

$$\varphi^{-1}(\operatorname{FJR}(S)) = \varphi^{-1}(\cap \{\beta \mid \beta \text{ is a fuzzy maximal ideal of } S\})$$
$$= \cap \{\varphi^{-1}(\beta) \mid \beta \text{ is a fuzzy maximal ideal of } S\}$$
$$\supseteq \operatorname{FJR}(R).$$

From Theorem 4-18, we have the following.

Corollary 4.19. Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S. Then $\varphi(\mathsf{FJR}(R)) \subseteq \mathsf{FJR}(S)$.

Proof. By Theorem 4-18, we have
$$\varphi(\text{FJR}(R)) \subseteq \varphi(\varphi^{-1}(\text{FJR}(S))) = \text{FJR}(S)$$
.

Definition 4.20. ([8]). Let R and S be any sets and let $f: R \to S$ be a function. A fuzzy subset A of R is called f-invariant if f(x) = f(y) implies A(x) = A(y), where $x, y \in R$.

Lemma 4.21. ([5]). Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S and α an φ -invariant fuzzy ideal of R such that all its level subsets are k-ideals of R. Then α is a fuzzy maximal ideal of R iff $\varphi(\alpha)$ is a fuzzy maximal ideal of S.

Lemma 4.22. ([5]). Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S and let α be an φ -invariant fuzzy ideal of R such that all its level subsets are k-ideals of R. Then $\bar{\alpha}$ is $\bar{\varphi}$ -invariant.

Theorem 4.23. Let $\varphi:R\longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S, $\bar{\varphi}$ the extension of φ , FMI(R) as in Lemma 4-5 and let $\mu=\mathrm{FJR}(R)$. If μ is φ -invariant, then every element of FMI(R) is φ -invariant.

Proof. Let $\varphi(x)=\varphi(y)$ $(x,y\in R)$. Then $\bar{\varphi}(x)=\bar{\varphi}(y)$. Since μ is φ -invariant, by Lemma 4-22, $\bar{\mu}$ is $\bar{\varphi}$ -invariant. Thus $\bar{\mu}(x)=\bar{\mu}(y)$, so that $\bar{\alpha}(x-y)\triangleq\bar{\alpha}(0)$ for all $\alpha\in \mathrm{FMI}(R)$. Thus $\bar{\alpha}(x)=\bar{\alpha}(y)$ and thus $\alpha(x)=\alpha(y)$ for all $\alpha\in \mathrm{FMI}(R)$. This completes the proof. \square

From Lemma 4-21 and Theorem 4-23, we have the following.

Theorem 4.24. Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S and FMI(R) as in Lemma 4-5, and let $\mu = FJR(R)$ be φ -invariant. Then if $\alpha \in FMI(R)$, then $\varphi(\alpha) \in FMI(S)$.

Lemma 4.25. Let φ , μ and FMI(R) be as Theorem 4-24. Then $f: \text{FMI}(R) \longrightarrow \text{FMI}(S)$ defined by $f(\alpha) = \varphi(\alpha)$ is bijective.

Proof. By Theorem 4-24, f is well defined. Let $f(\alpha) = f(\beta)$. Then $\varphi(\alpha) = \varphi(\beta)$. Since μ is φ -invariant, by Theorem 4-23, α and β are φ -invariant, so that $\alpha = \beta$. Thus f is one-one. Let β be any element of FMI(S). Then by Theorem 3-20, there exists $\alpha = \varphi^{-1}(\beta) \in \text{FMI}(R)$ such that $f(\alpha) = \varphi(\alpha) = \varphi(\varphi^{-1}(\beta)) = \beta$. Thus f is onto. This completes the proof.

By Lemma 4-25, we have $FMI(R) = \{\varphi^{-1}(\beta) \mid \beta \in FMI(S)\}$. So we obtain the following Theorem.

Theorem 4.26. Let φ , μ and FMI(R) be as Theorem 4-24 and $\nu = \text{FJR}(S)$. Then $\varphi^{-1}(\nu) = \mu$.

$$\begin{array}{llll} \textit{Proof.} \ \varphi^{-1}(\nu) &=& \varphi^{-1}(\cap\{\beta \mid \beta \in \mathrm{FMI}(S)\}) &=& \\ \cap\{\varphi^{-1}(\beta) \mid \beta \in \mathrm{FMI}(S)\} &=& \mu. \end{array}$$

Corollary 4.27. Let φ , μ and FMI(R) be as Theorem 4-24 and $\nu = \text{FJR}(S)$. Then $\varphi(\mu) = \nu$.

Proof. By Theorem 4-26
$$\varphi(\mu) = \varphi(\varphi^{-1}(\nu)) = \nu$$
.

Theorem 4.28. Let $\varphi: R \longrightarrow S$ be an epimorphism from a k-semiring R onto a k-semiring S and let $\mu = \mathrm{FJR}(R)$. Then

- (1) $\varphi(\alpha \cap \beta) \subseteq \varphi(\alpha) \cap \varphi(\beta)$ for any fuzzy ideals α and β of R.
- (2) If μ is φ -invariant, then $\varphi(\alpha \cap \beta) = \varphi(\alpha) \cap \varphi(\beta)$ for any fuzzy ideals α and β of R.

Proof. (1) Straightforward. (2) Let y be any element of S. Then there exists x in R such that $\varphi(x) = y$. Thus $(\varphi(\alpha) \cap \varphi(\beta))(y) = \min\{\varphi(\alpha)(y), \varphi(\beta)(y)\} = \min\{\alpha(x), \beta(x)\} = (\alpha \cap \beta)(x) = \varphi(\alpha \cap \beta)(y)$ by Theorem 4-23. This completes the proof.

From Theorem 4-6, Theorem 4-26 and Corollary 4-27, we have the following theorem.

Theorem 4.29. Let φ , μ and FMI(R) be as Theorem 4-24 and $\nu = \text{FJR}(S)$. Let \bar{R} and \bar{S} be the extension rings of R and S respectively. Then

- $(1) \overline{\varphi^{-1}(\nu)} = FJR(\bar{R}).$
- (2) $\overline{\varphi(\mu)} = \text{FJR}(\bar{S}).$

REFERENCES

[1] D.M.Burton, A first course in rings and ideals, Addition-wesley Cambridge, MA, 1970.

- [2] Y.B. Chun, H.S.Kim and H.B.Kim, A study on the structure of a semiring, Journal of the natural Science Research Institute (Yonsei Univ.) 11, pp. 69-74, 1983.
- [3] Y.B.Chun, C.B.Kim and H.S.Kim, Isomorphism theorem in *k*—semirings, Yonsei Nonchong 21, pp. 1-9, 1985.
- [4] Chang Bum Kim and Mi-Ae Park, k-fuzzy ideals in semirings, Fuzzy Sets and Systems 81, pp. 281-286, 1996.
- [5] Chang Bum Kim, Isomorphism theorems and fuzzy k-ideals of k-semirings, Fuzzy Sets and Systems 112, pp. 333-342, 2000.
- [6] H.V.Kumbhojkar and M.S.Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41, pp. 213-219, 1991.
- [7] H.V.Kumbhojkar and M.S.Bapat. Not-so-fuzzy fuzzy ideals, Fuzzy Sets and Systems 37, pp. 237-247, 1990.
- [8] Rajesh Kumar, Fuzzy semiprimary ideals of rings, Fuzzy Sets and Systems 42, pp. 263-272, 1991.
- [9] Rajesh Kumar, Fuzzy nil radicals and fuzzy primary ideals, Fuzzy Sets and Systems 43, pp. 81-93, 1991.
- [10] Rajesh Kumar, Fuzzy cosets and some fuzzy radicals, Fuzzy Sets and Systems 46, pp. 261-265, 1992.
- [11] Rajesh Kumar, Fuzzy subgroups, fuzzy ideals, and fuzzy cosets: Some properties, Fuzzy Sets and Systems 48, pp. 267-274, 1992.
- [12] Rajesh Kumar, Certain fuzzy ideals of rings redefined, Fuzzy Sets and Systems 46, pp. 251-260, 1992.
- [13] Takashi Kuraoka and Nobuaki Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47, pp. 381-386, 1992.
- [14] Wang Jin Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8, pp. 133-139, 1982.
- [15] D.S.Malik and J.N.Mordeson, Extensions of fuzzy subrings and fuzzy ideals, Fuzzy Sets and Systems 45, pp. 245-251, 1992.
- [16] D.S.Malik and J.N.Mordeson, Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. 55, pp. 151-165, 1991.
- [17] T.K.Mukherjee and M.K.Sen, On fuzzy ideals of a ring 1, Fuzzy Sets and Systems 21, pp. 99-104, 1987.

- [18] U.M.Swamy and K.L.N.Swamy, Fuzzy prime ideals of rings, Journal of Mathematical Analysis and Applications 134, pp. 94-103, 1988.
- [19] Zhang Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 21, pp. 345-350, 1988.
- [20] L.A.Zadeh, Fuzzy Sets, Inform. and Control 8, pp.

338-353, 1965.

Chang Bum Kim

Professor of Kookmin University Research Area: Fuzzy mathematics, Fuzzy Algebra

E-mail: cbkim@kookmin.ac.kr