• Title/Summary/Keyword: joint characteristics

Search Result 1,951, Processing Time 0.031 seconds

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.

The effects of Joint Stiffness On Concrete Pavements (콘크리트 포장구조에서 조인트 강성의 영향)

  • 조병완
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.50-52
    • /
    • 1990
  • Although concrete pavements were successfully widespread throughout the nation due to the desirable surface characteristics, durability, and economy, it still causes several transverse cracking and joint failure problems in some areas. In this paper, the major emphasis was given to provide a rational analytical approach on joint failure mechanisms, considering several sets of joint stiffnesses on different subgrade moduli. Besides , load transfer mechanisms on concrete pavement joints were highlighted with finite element method and computer modeling.

  • PDF

MODEL FOR ORGANIZATIONAL STRATEGY IN INTERNATIONAL CONSTRUCTION JOINT VENTURES: ORGANIZATIONAL ECONOMICS PERSPECTIVE

  • Yi-Hsin Lin;S. Ping Ho
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.768-773
    • /
    • 2005
  • Among various joint ventures, International Construction Joint Ventures (ICJVs) have emerged as a popular approach worldwide to developing large scale projects through international participation. A model, based on economic analysis and represented by several hypotheses obtained from the analysis, will be developed. Furthermore, we will empirically test the hypotheses/model using Structural Equation Model (SEM). This research is expected to explain why there exist different organizational forms for ICJVs, and to develop a framework for choosing appropriate forms with respect to various characteristics of ICJVs.

  • PDF

Complexity System Characteristics and Dominant Feedback Loops of Industry-University Joint Research R&D Networks: Centered on Power Law and Reinforcing Feedback Loops (산학 공동연구 R&D 네트워크의 복잡계 특성과 지배적 피드백 루프: 거듭제곱법칙과 양의 피드백 루프를 중심으로)

  • Hong, Sung-Ho;Lee, Man-Hyung
    • Korean System Dynamics Review
    • /
    • v.13 no.1
    • /
    • pp.113-131
    • /
    • 2012
  • Applying social network analysis techniques, this study examines complex system characteristics of industry-university joint research R&D networks. In specific, it focuses on whether these R&D networks comply with the power law, whose system typically presents the-rich-get-richer and the-poor-get-poor patterns. The basic data come from 7,751 industry-university joint research projects, all of which were carried out by Daejeon, Chungbuk, and Chungnam-based universities from January 2005 to October 2008. The empirical results reveal that the R&D networks abide by the power law. That is, a handful of business units and universities command an overwhelming majority in the joint links, indicating positive feedback dominance within the system.

  • PDF

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 전신 주요 관절의 카오스 지수 분석)

  • Park, Jung-Hong;Son, Kwon;Seo, Kuk-Woong;Park, Young-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.792-795
    • /
    • 2007
  • To quantify irregular body motions the time series analysis was applied to the gait study. The motions obtained from gait experiment are complex to exhibit nonlinear behaviors. The purpose of this study is to measure quantitatively the characteristics of the major six joints of the body during walking. The gait experiments were carried out for eighteen young males walking on a motor driven treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The largest Lyapunov exponent was calculated from the time series to quantify stabilities of each joint. The results provides a data set of nonlinear dynamic characteristics for six joints engaged in normal walking.

  • PDF

A Study on the Characteristics of Stress Transfer around Cavern due to Cavern size and Rock Joint Orientation by Laboratory Model Test (모형실험을 통한 공동규모와 절리 방향성에 따른 공동배면의 응력전이 특성에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.595-606
    • /
    • 2009
  • This paper presents the characteristics of stress transfer around carven due to cavern size and rock joint properties by laboratory model test. In order to perform this study, eight different scaled model tests were carried out according to excavation stage. The limited numerical analysis were also performed to verify the model test results. The amount of stress transfer around the cavern is increased and then decreased by longitudinal arching effect according to tunnel excavation. It is founded that the stress developed around the cavern during excavation is increased when the cavern size and joint orientation are increased. It is also investigated that shear behaviour (such as stress, deformation) developed around cavern is considerably depended on the characteristic of fill material, dip and direction of joints. It is suggested that the behaviour will be verified throughout the 3D numerical prediction.

  • PDF

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.

Comparison Gait Analysis of Normal and Amputee: Filtering Graph Data Based on Joint Angle

  • Junhyung Kim;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • Gait analysis plays a key role in the research field of exploring and understanding human movement. By quantitatively analyzing the complexity of human movement and the various factors that influence it, it is possible to identify individual gait characteristics and abnormalities. This is especially true for people with walking difficulties or special circumstances, such as amputee, for example. This is because it can help us understand their gait characteristics and provide individualized rehabilitation plans. In this paper, we compare and analyze the differences in ankle joint motion and angles between normal and amputee. In particular, a filtering process was applied to the ankle joint angle data to obtain high accuracy results. The results of this study can contribute to a more accurate understanding and improvement of the gait patterns of normal and amputee.

Optimal estimation of rock joint characteristics using simulated annealing technique - A case study

  • Hong, Chang-Woo;Jeon, Seok-Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.78-82
    • /
    • 2003
  • In this paper, simulated annealing technique was used to estimate the rock joint characteristics, RMR(rock mass rating) values, to overcome the defects of ordinary kriging. Ordinary kriging reduced the variance of data, so lost the characteristics of distribution. Simulated annealing technique could reflect the distribution feature and the spatial correlation of the original data. Through the comparisons between three times simulations, the uncertainty of the simulation could be quantified, and sufficient results were obtained.

  • PDF

An analysis on stability of riprap considering hydraulic characteristics of flow around joint revetment (연결호안 주변 흐름의 수리적 특성을 고려한 사석호안의 안정성 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.1035-1044
    • /
    • 2016
  • In joint portions of the levee and the barrier, complex 3-dimensional flow was generated and collapse of revetment occurred frequently. For these reasons, it is necessary to install the joint revetment with greater stability as compared with the general revetment at the joint portions. However, design criteria for joint revetment was not presented in River Design Criteria (KWRA, 2009). Therefore it is necessary to research for engineering design of the joint revetment. In this study, hydraulic experiments were performed under various flow conditions in order to realize the collapse conditions of riprap and carried out in 20.0 m straight open channel with one side levee and the width was 4.0 m. The diameter of riprap covered around joint revetment was 0.03 m and the inlet discharges were $0.5{\sim}0.8m^3/s$. The numerical simulations were performed under same conditions with experiment. as results of this numerical simulations, the influence range was confirmed from the distribution of flow characteristics and shear stress. As a result, the riprap diameter of the joint revetment was calculated from 4.1 to 6.9 times greater than that of general revetment. As the inlet discharge was large, the range of vulnerable area was developed long in the downstream direction despite of same withdrawal velocity of riprap. Through this study, the methods of calculating the riprap diameter and influence range were proposed according to hydraulic characteristics of flow around joint revetment. At a later study, if additional experiments about effect of flood plane and various types of barrier is applied, it is expected that rational design method with stability of joint revetment can be proposed.