• Title/Summary/Keyword: iterative equation

Search Result 322, Processing Time 0.028 seconds

Identification and Multivariable Iterative Learning Control of an RTP Process for Maximum Uniformity of Wafer Temperature

  • Cho, Moon-Ki;Lee, Yong-Hee;Joo, Sang-Rae;Lee, Kwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2606-2611
    • /
    • 2003
  • Comprehensive study on the control system design for a RTP process has been conducted. The purpose of the control system is to maintain maximum temperature uniformity across the silicon wafer achieving precise tracking for various reference trajectories. The study has been carried out in two stages: thermal balance modeling on the basis of a semi-empirical radiation model, and optimal iterative learning controller design on the basis of a linear state space model. First, we found through steady state radiation modeling that the fourth power of wafer temperatures, lamp powers, and the fourth power of chamber wall temperature are related by an emissivity-independent linear equation. Next, for control of the MIMO system, a state space modeland LQG-based two-stage batch control technique was derived and employed to reduce the heavy computational demand in the original two-stage batch control technique. By accommodating the first result, a linear state space model for the controller design was identified between the lamp powers and the fourth power of wafer temperatures as inputs and outputs, respectively. The control system was applied to an experimental RTP equipment. As a consequence, great uniformity improvement could be attained over the entire time horizon compared to the original multi-loop PID control. In addition, controller implementation was standardized and facilitated by completely eliminating the tedious and lengthy control tuning trial.

  • PDF

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

Vortex behavior in the inertial flow of viscoelastic fluids past a confined cylinder

  • Kim, Ju Min;Kim, Chongyoup;Chung, Changkwon;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.117-128
    • /
    • 2004
  • The effect of molecular parameters on the steady vortex behaviors in the inertial viscoelastic flow past a cylinder has been investigated. FENE-CR model was considered as a constitutive equation. A recently developed iterative solution method (Kim et al., (in press)) was found to be successfully applicable to the computation of inertial viscoelastic flows. The high-resolution computations were carried out to understand the detailed flow behaviors based on the efficient iterative solution method armed with ILU(0) type pre-conditioner and BiCGSTAB method. The discrete elastic viscous split stress-G/streamline upwind Petrov Galerkin (DEVSS-G/SUPG) formulation was adopted as a stabilization method. The vortex size decreased as elasticity increases. However, the vortex enhancement was also observed in the case of large extensibility, which means that the vortex behavior is strongly dependent upon the material parameters. The longitudinal gradient of normal stress was found to retard the formation of vortex, whereas the extensional viscosity played a role in the vortex enhancement. The present results are expected to be helpful for understanding the inertial vortex dynamics of viscoelastic fluids in the flow past a confined cylinder.

Finite Element Analysis of Shape Rolling Process using Destributive Parallel Algorithms on Cray T3E (병렬 컴퓨터를 이용한 형상 압연공정 유한요소 해석의 분산병렬처리에 관한 연구)

  • Gwon, Gi-Chan;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1215-1230
    • /
    • 2000
  • Parallel Approaches using Cray T3E which is NIPP (Massively Parallel Processors) machine are presented for the efficient computation of the finite element analysis of 3-D shape rolling processes. D omain decomposition method coupled with parallel linear equation solver is used. Domain decomposition is applied for obtaining element tangent stifffiess matrices and residual vectors. Direct and iterative parallel algorithms are used for solving the linear equations. Direct algorithm is_parallel version of direct banded matrix solver. For iterative algorithms, the well-known preconditioned conjugate gradient solver with Jacobi preconditioner is also employed. Moreover a new effective iterative scheme with block inverse matrix preconditioner, which is named by present authors, is presented and its results are compared with the one using Jacobi preconditioner. PVM and MPI are used for message passing and synchronization between processors. The performance and efficiency of each algorithm is discussed and comparisons are made among different algorithms.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

New Direct Kinematic Formulation of 6 D.O.F Stewart-Cough Platforms Using the Tetrahedron Approach

  • Song, Se-Kyong;Kwon, Dong-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.217-223
    • /
    • 2002
  • The paper presents a single constraint equation of the direct kinematic solution of 6-dof (Stewart-Gough) platforms. Many research works have presented a single polynomial of the direct kinematics for several 6-dof platforms. However, the formulation of the polynomial has potential problems such as complicated formulation procedures and discrimination of the actual solution from all roots. This results in heavy computational burden and time-consuming task. Thus, to overcome these problems, we use a new formulation approach, called the Tetrahedron Approach, to easily derive a single constraint equation, not a polynomial one, of the direct kinematics and use two well-known numerical iterative methods to find the solution of the single constraint equation. Their performance and characteristics are investigated through a series of simulation.

FINDING THE SKEW-SYMMETRIC SOLVENT TO A QUADRATIC MATRIX EQUATION

  • Han, Yin-Huan;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.587-595
    • /
    • 2012
  • In this paper we consider the quadratic matrix equation which can be defined be $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix; A,B and C are $n{\times}n$ given matrices with real elements. Newton's method is considered to find the skew-symmetric solvent of the nonlinear matrix equations Q(X). We also show that the method converges the skew-symmetric solvent even if the Fr$\acute{e}$chet derivative is singular. Finally, we give some numerical examples.

Inverse Design Method of Supersonic wings Using Intergral Equations (적분방정식을 이용한 초음속 날개의 역설계법)

  • Jeong, Sin Gyu;Kim, Gyeong Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • A practical design method for supersonic wings has been developed. The method is based on Takanashi's method that uses integral equations and iterative "residual-correction" concept. The geometry correction is calculated by solving linearized small perturbation equation (LSP) with the difference between garget and objective surface pressure distributions as a boundary condition. In the present method, LSP equation is analytically transformed to integral equations by using the Green's theorem. Design results of an isolated wing and wing-nacelle configurations are presented here.

자유곡면의 측정 및 공구경로산출을 위한 프로브반경보정 연구

  • 이성권;서석환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.71-76
    • /
    • 2001
  • In the surface measurement system using touch probe, probe radius compensation is a key factor for accuracy. In this paper we investigate methods for compensating probe radius so that the surface equation for an "unknown surface" can be efficiently derived. The developed algorithm derives the surface equation by the iterative procedure of estimation, verification, and modification . Since the procedure is applied only for the surface region exceeding the tolerance limit, an accurate surface equation can be obtained with less computation and measurement point. The validity and effectiveness of the algorithm was tested by numerical simulations. The results convinced us that the develop algorithm can be used for surface measurement and tool path planning for NC machining.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.