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Vortex behavior in the inertial flow of viscoelastic fluids past a confined cylinder
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Abstract

The effect of molecular parameters on the steady vortex behaviors in the inertial viscoelastic flow past a cyl-
inder has been investigated. FENE-CR model was considered as a constitutive equation. A recently devel-
oped iterative solution method (Kim et al., (in press)) was found to be successfully applicable to the
computation of inertial viscoelastic flows. The high-resolution computations were carried out to understand
the detailed flow behaviors based on the efficient iterative solution method armed with ILU(0) type pre-
conditioner and BiCGSTAB method. The discrete elastic viscous split stress-G/streamline upwind Petrov
Galerkin (DEVSS-G/SUPG) formulation was adopted as a stabilization method. The vortex size decreased
as elasticity increases. However, the vortex enhancement was also observed in the case of large extensibility,
which means that the vortex behavior is strongly dependent upon the material parameters. The longitudinal
gradient of normal stress was found to retard the formation of vortex, whereas the extensional viscosity
played a role in the vortex enhancement. The present results are expected to be helpful for understanding the
inertial vortex dynamics of viscoelastic fluids in the flow past a confined cylinder.
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1. Introduction

Flow around a cylinder problem has been intensively
studied as a benchmarking problem in the field of vis-
coelastic flow simulation. Though they are practically
important, however, the detailed flow characteristics have
not yet been fully understood due to the difficulty in the
numerical computation of very thin stress boundary layer
and singular behavior. Recently, Dou and Phan-Thien
(2003) compiled the issues related to the viscoelastic flow
around a cylinder; 1) vanation of drag coefficient, 2)
upstream or downstream shift of streamline and 3) so
called “negative wake” phenomenon. For the low Rey-
nolds number flow, there seems to be a consensus about
the drag coefficient. It shows an initial decrease and a
recovery with increasing elasticity (Huang and Feng,
1995). However, there is a wide discrepancy in the pre-
diction of streamline shift among previous theoretical and
experimental results. Ultman and Denn (1971) showed an
upstream streamline shift by theoretical analysis and visu-
alization with aqueous polymer solution. Broadbent and
Mena (1974) found no discernable difference from New-
tonian case, and Mena and Caswell (1974) predicted the
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downstream shift. Koniuta er al. (1980) found that the
upstream shift is more obvious with increasing We in front
of the cylinder, while the wake is much broader and the
velocities are slower than the Newtonian case in the rear of
the cylinder. McKinley et al. (1993) showed that the veloc-
ity profile is nearly independent of We at the front of the
cylinder, whereas the velocity shifts downstream in the
wake region with increasing elasticity. They also showed
the same trend by numerical simulation using FENE-CR
model (Chilcott and Rallison, 1988). Very recently, Dou
and Phan-Thien (2003) predicted that the flow is shifted
downstream for UCM and Oldroyd-B models in creeping
flow, whereas the streamline for PTT monotonically shifts
upstream behind the cylinder. For FENE-CR fluid, they
showed that the behavior is similar to PTT at low value of
L (extensibility), and its behavior is similar to Oldroyd-B
model for high value of L except the velocity overshoot
that occurs further downstream, which means that the
downstream or upstream shift strongly depends on the
material parameters.

Hassager (1979) found so-called “negative wake” which
occurs in the viscoelastic flow behind a moving object or
a bubble. “Negative wake” denotes a velocity overshoot in
the reference frame of fixed object. Chilcott and Rallison
(1998) did not find any overshoot in the axial velocity
using their constant shear viscosity model (FENE-CR
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model) and explained that “negative wake” arises from the
combined effect of shear-thinning and large extensibility.
Although McKinley et al. (1993) performed extensive
experiments with Boger fluid, they did not find an over-
shoot up to flow instability. Arigo and McKinley (1998)
showed by experiments that “negative wake” could always
occur for shear thinning fluid in flow around a sphere.
However, “negative wake” was observed using FENE-CR
model with low extensibility by Satrape and Crochet
(1994). Dou and Phan-Thien (2003) investigated the influ-
ence of parameters of constitutive equations on the neg-
ative wake and concluded that a Iower extensional
viscosity will promote the generation of a negative wake,
which supports the importance of extensional viscosity as
Bush (1994) pointed out. Harlen (2002) explained the
mechanism of negative wake such that the ‘“negative
wake” is formed by the relaxation of shear stress generated
near the side of a sphere and this force is competing with
the extensional stress generated in the extensional flow at
the rear of the sphere. Dou and Phan-Thien (2004) pro-
posed a critical We for PTT, FENE-CR, FENE-P and
Giesekus models by analyzing the velocity profile along
the centerline of the wake region.

The three issues related to the cylinder problem have
been extensively investigated, however, they were mainly
restricted to inertialess flows. The vortex dynamics gen-
erated behind the cylinder is not well understood in inertial
flows in spite of its practical importance. In literatures,
there exist several experimental reports on inertial vortex
dynamics in the flow around a sphere or cylinder. James
and Acosta (1970) showed a drag increase and reduced
heat transfer coefficient for large values of Reynolds num-
ber. Adachi et al. (1977, 1978) showed that the vortex size
decreases with elasticity. On the other hand, Koniuta et al.
(1980) showed that the wake is much broader, however,
they did not directly show the behavior of vortex size.

As for numerical simulation of inertial flows, there are
several results with the continuum-based constitutive equa-
tions. Pilate and Crochet (1977) predicted with a second-
order fluid that the inertial vortex is elongated behind the
cylinder compared to the Newtonian case. Townsend
(1980) showed the same trend using four-constant Oldroyd
model. Hu and Joseph (1990) using UCM model showed
that the streamlines around the cylinder and recirculation
zone detach from the cylinder and the gap among the
streamlines becomes larger as elasticity increases, which
results in the increase of vortex size. Huang and Feng
(1995) showed that the axial velocity shifts downstream for
Oldroyd-B model in the uniform flow. However, there
seems to be no discernable difference in vortex size in their
results. Matallah et al. (1998) showed that the vortex size
strongly depends on numerical schemes. Later, Wapperom
and Webster (1999) revisited the same problem with a
finite volume/element hybrid scheme. According to their
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results, no vortex enhancement was detected up to numer-
ical failure and the downstream shift was reproduced.
Recently, Oliveira (2001) conducted the transient numer-
ical simulation of vortex shedding past a cylinder for New-
tonian and FENE-CR fluids. He showed that the frequency
of vortex shedding is attenuated by elasticity of the fluid
and the size of vortex behind the cylinder is extended. He
related it to the previous experimental works of Cressman
et al. (2001), and explained in terms of the restabilization
effect of viscoelasticity.

However, there is few numerical simulation with the
molecule-based constitutive equations and the influence of
molecular parameters has not yet been realized. In this
work, we focus on the flow behavior of FENE-CR fluid
(Chilcott and Rallison, 1988) past a confined cylinder and
investigate the influence of elasticity and material param-
eters on the inertial vortex.

Since it is known that the flow simulation of viscoelastic
flow past a confined cylinder is difficult due to the very
thin boundary layer at both cylinder wall and wake region,
a very refined mesh should be used in the high gradient
region of extra stress to capture the detailed behaviors of
the flow fields. In this work, DEVSS-G (discrete elastic
viscous split stress-G)/SUPG (streamline upwinding Petrov
Galerkin) scheme was implemented as a stabilization
scheme. The high-resolution computation was applied to
inertial flow based on the efficient iterative solution
method (Kim et al., (in press)) which is composed of mod-
ified adaptive incomplete LU(0) preconditioner and BiCG-
STAB (bi-conjugate gradient stabilized) method (van der
Vorst, 1992). In our previous work, solutions were
obtained for inertialess flow and the application to inertial
flow will be presented in this paper.

2. Governing Equations and boundary conditions

We consider the momentum equation including inertia
with incompressibility constraint, and FENE-CR model is
employed as a constitutive equation. FENE-CR model pre-
dicts constant shear viscosity, shear-thinning of first normal
stress difference coefficient, and controlled elongational
viscosity.

Re(u-Vu)=-Vp+V.1 (1
Vu=0 2)
Tp+%€(u~VTp—(Vu)T~ 1,1, (Vu)) = B((Va)+(Var)T),

L*+(We/B)tr(t,)
=L RPN ) 3
f=E 3
In the above equations, §is the viscosity ratio of polymer
(n,) and solution (7)), the velocity u is scaled with a char-

acteristic velocity U, the stress tensor 7 and pressure p are
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Fig. 1. Schematic diagram of flow past a confined cylinder.

scaled with 1,U/H., where H. is the characteristic length
(radius of cylinder). Extra stress tensor T comprises of
Newtonian stress contribution 7, and polymer contribution
7,. Re denotes the Reynolds number that is defined by
H.Up/n, and We is the Weissenberg number which stands
for AU/H,, where p is density, 7, denotes viscosity and A
stands for the relaxation time. The Poiseuille flow condition
was assumed as shown in Fig. 1. In Poiseuille flow bound-
ary condition, the unperturbed velocity profile is parabolic
and its average velocity is <u>.

2.1. Boundary conditions

No slip boundary condition was imposed on the cyl-
inder wall as well as upper and lower plates. Fully devel-
oped boundary conditions of extra stresses and velocity
were imposed on the inlet. Fully developed velocity
fields were imposed on the outlet and boundary con-
dition for extra stress is not necessary on the outlet. The
fully developed velocity field and extra stress can be
denoted by

”=%<“>(1‘(%1)2)’ v=0 @)
2 du 2
iy ()
=0 ©)
w=p(%) ™

where (u) is the average velocity of the upstream and H is
the half of the channel height. The aspect ratio of the half
channel height to cylinder radius was fixed to two, and the
characteristic velocity U was set to (u).

3. Numerical method
In this study, the velocity, pressure, extra stress and
velocity gradient tensor were approximated with

Lagrangian basis functions as shown in Eq. 8. The com-
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putational domain € was discretized into quadrilateral
finite elements R, so that Q=UR, and @=NR,.

u=2x Yu, p=2op,

S= 2 o8, G= z $,G; (®)
where § denotes 7, and ¢, and y; are the bilinear and
biquadratic basis functions, respectively.

The weak forms of Egs. (1), (2), (3), (8) with DEVSS-G
stabilization formulation are

(Re(u-Vu);y)+{—pI+(Vu+(Vu) )+S-B(G +(G) );V y)

= ({(-pI+(Vu+(Va) )+S-B(G+(G))) - n;y)) )
(Vou;)=0 (10)
(G-Vu;$)= 0 (11)

<s +%€(uoVS—(G)T~S—S-G)—ﬁ(G+(G)T);¢>= 0 (12

f= L+ (WelB)tr(S)
- 2

L*-3
where n stands for the outward normal vector at the bound-
ary and { is the unit tensor. In the above equations, symbols
<;> and <<;>> denote domain integral and boundary
surface integral, respectively. In this work, the modified
streamline upwind/Petrov-Galerkin (SU/PG) of Fan and
Crochet (1995) was consistently applied to the constitutive
equation. In the SU/PG method, standard weight function
was modified as follows:

¢, = o+kw-Vo 13)

where ¢, is the modified weight function and ¢ is the
standard bilinear interpolation function. The overall non-
linear equations were linearized using Newton-Raphson
method. The convergence criterion for Newton method
was set to the L, of relative error between two steps less
than 107", The linear equations of Newton Raphson step
were solved by incomplete LU(Q) type preconditioner
and BiCGSTAB method (van der Vorst, 1992), whose
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Table 1. Mesh information

Mesh (I}urélnbj(:; Number of  Total Ax at Ay at

‘ nodes DOF (7,0) 7.0
elements

UM1 6,681 27,320 110472 0.01000 0.00904

UM2 15,822 64,466 260,220 0.00158 0.00188

UM3 31,671 128,046 514908 0.00044 0.00052

detailed description will be shown in the separate paper
(Kim et al., (in press)). In the solution process of linear
equations, the convergence criterion was set to the L,
norm of residual less than 107" in BiCGSTAB solver.

4. Results and discussion

Three different meshes were used in this work and their
detailed information is presented in Table 1. The magnified

sy
S
&

(b) UM2

Fig. 2. Mesh configurations.
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meshes are also shown in Fig. 2. They are composed of
rectangular finite elements as mentioned in the previous
section. As it is of unstructured type, we can increase the
computational efficiency by locally refining the order of
mesh, and the resolution of mesh was significantly
enhanced especially at the rear of the cylinder. All com-
putations were performed using the identical computa-
tional domain with Caola et al. (1999). The center of
cylinder was set to (6,0), the front length 6R and the rear
length 12R (See Fig. 1). As denoted in Table 1, (Ax, Ay)
was used as a parameter which represents the smallest
mesh size at the rear of the cylinder, and was reduced from
O(107>x R) to O(10” x R). The finest mesh in this study
has over 30,000 elements and over 500,000 degree of free-
dommns. It typically took 1~2 hours to obtain the converged
solution for Mesh III on a single 2.4 GHz Pentium IV® PC
with 2GB main memory. The maximum convergence
depends on the Reynolds number, viscosity ratio () and
extensibility (L*); the limiting We was restricted to 2.5 at
L’=100, B=0.41 and Re=10, for example. The maximum

80

(a)

Fig. 3. Mesh refinement test: (a) longitudinal normal stress and
(b) velocity profiles.
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Fig. 4. Streamlines (-0.004 < v < 0.004, Ay=8e-4) at the rear of
the cylinder when We=5, Re=10, ’=100 and S=0.41.

attainable We was reduced as L increases. The mesh
refinement test was performed when Re=10, ’=100, B
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=(0.41 and We=5. The extra stress and velocity in the wake
region are plotted along the cylinder wall and centerline in
Fig. 3. In the figure, & was defined along the cylinder wall
and downstream centerline such that its value is O at the
front stagnation point and 7 at the rear stagnation point.
The extra stress and velocity profiles of different meshes
are almost identical. In Fig. 4, the streamlines are also
shown with varying meshes. The solutions are independent
of the discretization level, which means a good mesh con-
vergence. Hence, all computations have been conducted
with Mesh 1II afterwards.

Caola et al. (2001) would be the first who carried out
high-resolution finite element computation of viscoelastic
fluid flows using a parallel iterative solution method, how-
ever, their formulation was restricted to inertialess flow.
The present solution method has no limit in taking inertia
into account and this study will be the first attempt to show
high-resolution computation of inertial flow in computa-
tional rheology.

First, the effect of elasticity was investigated in case of
Re=10 and L’=100. In this work, 8 was set to 0.41 or 0.1.
B=0.41 was suitable for Boger fluid of MIT group (McK-
inley et al., 1993) and used by Dou and Phan-Thien (2003)
and Liu er al. (1998). Viscosity ratio §=0.1 was used for
dilute polymer solutions and this value is close to what
Ofliveira (2001) used for vortex shedding simulation (8
=0.091). As shown in Fig. 5, the vortex is getting small and
finally disappears at the same viscosity ratio (8=0.41) as
elasticity increases. This tendency is quite different from
the previous results with the Oldroyd-B model (Pilate and
Crochet, 1977; Townsend, 1980; Hu and Joseph, 1990;
Matallah et al., 1998; Wapperom and Webster, 1999),
where they reported the growth of vortex size or no vortex
enhancement. Longitudinal normal stress component and
velocity profile at Re=0 are presented in Fig. 6 along the
cylinder wall and centerline. For the longitudinal extra
stress field, the extra stress at both cylinder and wake
region increases and saturates to the specific profile as We
increases. The saturation of longitudinal extra stress at the
cylinder wall was also observed in creeping flows of Old-
royd-B model (Alves et al., 2001; Fan et al., 1999). Con-
trary to our results, the extra stress was shown (o
monotonically increase in the wake region (Alves et al.,
2001; Fan er al., 1999) and the saturation of the present
results can be attributed to finite extensibility of the FENE-
CR model we have used. For velocity fields, there exist
quite different behaviors in two regions, recirculation zone
and downstream zone away from the recirculating zone.
There are two stagnation points in focus; one at the rear
cylinder wall and the other between the recirculating zone
and downstream flow field along the centerline. The veloc-
ity monotonically shifts upstream in the recirculating zone,
whereas a reversal of velocity shift occurs around We=0.5
away from the recirculating region, that is, the velocity
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Fig. 5. Streamlines (-0.004 < y < 0.004, Ay=8e-4) at the rear of the cylinder when Re=10, L’=100 and f=0.41 with UM3.
shifts upstream up to We=0.5 and shifts downstream over lation of Dou and Phan-Thien (2003) who found the same
We=0.5 in the downstream velocity field. The reversal of phenomenon for UCM, Oldroyd-B, FENE-CR with large

velocity shift was also observed in creeping flow simu- value of L*=100 and $=0.9 in uniform flow condition. In
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Fig. 6. Longitudinal normal stress component and velocity pro-
files when Re=10, =041, L’=100: (a) longitudinal nor-
mal stress component and (b) velocity profiles.

Fig. 7, the axial velocity profiles are compared at different
Re. When Re is between 0 and 1, the reversal of velocity
shift was not observed and the velocity monotonically
shifted downstream in contrast to Re=10. So, the reversal
of velocity shift depends on Re, material parameters and
flow conditions.

The mechanism of vortex shrinkage seems to be complex
due to the viscoelastic effect arising from contraction-to-
expansion and elongational flow along the centerline after
stagnation point. As can be imagined in Fig. 8, the accel-
eration of fluid element (rapid increase of velocity) results
in the reduction of vortex and the deceleration (slower
increase of velocity) produces vortex enhancement. In Poi-
seuille flow condition, the channel flow between cylinder
wall and plates can be considered as a contraction flow and
the flow from the cylinder to downstream region can be
regarded as an expansion flow. Therefore, the flow around
a confined cylinder can be envisaged as a contraction-to-
expansion flow. The developed extra stress between cyl-
inder wall and the plates relaxes in the downstream zone.
Baloch et al. (1996) extensively performed numerical sim-
ulations using Phan-Thien Tanner model for expansion and
contraction flows in both 2D and 3D geometries, and
showed that the corner vortex shrinks as elasticity increases,
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Fig. 7. Velocity profiles; (a) Re=0, =041, L?=100, (b) Re=1,
B=041, L=100.
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Fig. 8. A schematic diagram for the variation of vortex size
depending on the acceleration or retardation of fluid ele-
ments near the stagnation point between the recirculating
zone and downstream flow field along the centerline.
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Fig. 9. Shear stress contours; (a) We=1, (=0.41, L’=100, (b)
We=3, f=0.41, I’=100, (c) We=5, p=0.41, L*=100.

which seems to be similar to the vortex shrinkage of the
present study. However, as there exists a strong extensional
flow behind the cylinder along the centerline in the flow
around a confined cylinder in contrast to contraction-to-
expansion flow, the extensional flow property also plays an
important role. According to Harlen (2002), the acceler-
ation of fluid element can be enhanced or retarded by the
forcing term, which is defined as follows.

_ 0% Oy
L= & (14)

In this equation, Jr,./é is always positive and Jz,,/ép s
negative in the recirculating zone. As shown in Fig. 6, the
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recirculating zone exists between £= rand £=4 (x=7.86),
where the longitudinal gradient of normal stress is always
positive, whereas Jz,,/dy has negative value as shown in
Fig. 9. Therefore, it is predicted that the acceleration of
fluid element is enhanced or retarded by the competition of
or,/éx and Jr,,/d . The reduction of vortex size seems to
originate from positive longitudinal gradient of normal
stress that is dominant over negative circumferential gra-
dient of shear stress. However, the velocity profile from the
cylinder wall to fully developed zone strongly depends on
the extensional viscosity. Both velocity and velocity gra-
dient vanish at the cylinder wall stagnation point, however,
the velocity gradient or elongational rate has finite value at
the stagnation point between the recirculating zone and
developing downstream flow, as shown in Fig. 6(b). The
extensional viscosity may play a role in retarding the accel-
eration of the fluid element at the stagnation point between
recirculating zone and developing downstream. Therefore,
the combined effect of elasticity convecting between cyl-
inder wall and plates, normal stress and elongational vis-
cosity should be considered together to explain the
complex vortex behavior behind the cylinder.

To investigate the effect of elongational viscosity, we
performed the computation with two extensibility param-
eters (L*=100 and 1000) at constant viscosity ratio (5=0.1).
We could obtain converged solutions up to high We of 7
when fwas set to 0.1 and Z’=100. The streamlines are pre-
sented in Fig. 10 and 11. Velocity and longitudinal extra
stress profiles for L’=100 are also shown in Fig. 12, and the
velocity profiles for L’=1000 are shown in Fig. 13, where
Fig. 13(b) is the magnified picture of the circled region in
Fig. 13(a). The tendency of overall reduction of vortex size
was reproduced. However, the diminishing tendency of
vortex size for $=0.1 is weaker than $=0.41. That is, the
vortex size is less sensitive to We at low viscosity ratio.
The dependency of vortex size on fand L* is shown in Fig,
14, where we define the vortex size as the longitudinal
length of the recirculating zone. Despite the overall dimin-
ishing tendency of the vortex size, there is a slight increase
of vortex size up to We=1 for L’=1000 (Fig. 14). We can
explain it by the role of elongational viscosity at the stag-
nation point between recirculating zone and developing
downstream flow. Large elongational viscosity retards the
acceleration of the fluid element, which results in the
increase of vortex size, as shown in Fig. 8. Since the level
of extensional viscosity is higher for Z*=1000 than L*=100,
it is obvious that the acceleration of fluid element is
retarded for L’=1000 and the vortex size increases. How-
ever, as the region of vortex enhancement is restricted to
small range, the overall diminishing tendency is also repro-
duced for L*=1000. From the vortex dynamics mechanism
and corresponding numerical observations, the previous
vortex enhancement (Huang and Feng, 1995; Matallah ef
al., 1998) seems to be a subset of the present solutions, and
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Fig. 10. Streamlines (-0.004 < y < 0.004, Ay=8e-4) at the rear of the cylinder when Re=10, L’=100 and B=0.1.

may be attributed to over-predicting extensional viscosity ior of flow around a confined cylinder with FENE-CR
of Oldroyd-B model. model. Even though the cylinder problem in Poiseuille
In the present work, we have discussed the vortex behav- flow seems to be simple, the flow behavior is rather com-

Korea-Australia Rheology Journal September 2004 Vol. 16, No. 3 125



Ju Min Kim, Chongyoup Kim, Changkwon Chung, Kyung Hyun Ahn and Seung Jong Lee

05

T

-0.5

L L T
7.5

(c) We=2 (d) We=2.5
Fig. 11. Streamlines (—0.004 < y < 0.004, Ay=8e-4) at the rear of the cylinder when Re=10, L’=1000 and S=0.1.

Fig. 12. Longitudinal normal stress component and velocity profiles when Re=10, $=0.1, L*=100: (a) longitudinal normal stress com-
ponent and (b) velocity profiles.
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Fig. 13. Velocity profiles and its magnified view when Re=10,
B=0.1, L’=1000: (a) normal view, (b) magnified view of
the circled region in (a).
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Fig. 14. Dependence of the vortex length on material parameters
when Re=10.
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plex. It seems that the viscoelasticity retards the formation
of vortex, which is a variant of stabilization effect of vis-
coelasticity. In the present work, we did not investigate the
shear-thinning fluid in order to exclude the shear-thinning
effect. Finally, we like to point out that there is no exper-
imental work directly related to the present study, however,
the present work will be useful for understanding the iner-
tial vortex dynamics and for future experiments.

5. Conclusions

In this work, the effect of elasticity and extensional vis-
cosity on the steady inertial vortex dynamics has been inves-
tigated with FENE-CR model. The present study shows that
the vortex dynamics is strongly dependent upon the material
parameters. The reduction of vortex size was obvious for a
wide range of elasticity, however, the vortex enhancement
was also observed for a narrow range in case of large L*. It
is proposed that the positive longitudinal gradient of normat
stress results in retarding the formation of vortex, whereas
the extensional viscosity plays a role in vortex enhancement.
The stabilization effect of viscoelasticity seems to be obvi-
ous at high We, however, the stabilization window is depen-
dent upon the extensional property as well.
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