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FINDING THE SKEW-SYMMETRIC SOLVENT TO

A QUADRATIC MATRIX EQUATION

Yin-Huan Han and Hyun-Min Kim*

Abstract. In this paper we consider the quadratic matrix equation which

can be defined by

Q(X) = AX2 + BX + C = 0,

where X is a n × n unknown real matrix; A,B and C are n × n given

matrices with real elements. Newton’s method is considered to find the
skew-symmetric solvent of the nonlinear matrix equations Q(X). We also

show that the method converges the skew-symmetric solvent even if the

Fréchet derivative is singular. Finally, we give some numerical examples.

1. Introduction

It is well-known that the main application of quadratic matrix equation

Q(X) = AX2 +BX + C, A,B,C ∈ Rn×n, (1)

arises in the quadratic eigenvalue problem

Q(λ)x = (λ2A+ λB + C)x = 0. (2)

When A = AT , B = −BT , C = CT in the quadratic eigenvalue problem
(2), it has a Hamiltonian eigenstructure, that is, the eigenvalues are symmet-
ric with respect to both axes [9, 11]. Motivation for finding skew-symmetric
solvent of the quadratic matrix equation (1) comes from the quadratic eigen-
value problem (2), because any skew-symmetric matrix has a pair of purely
imaginary eigenvalues. For solving a skew-symmetric eigenvalue problem [10]
we suggest an algorithm and convergent theory for finding the skew-symmetric
solvent to the equation (1).
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2. Newton’s methods for Q(X)

If we define E as the solution of the linear equation Q(X) + QX(E) = 0,
where QX(E) is the Fréchet derivative of Q at X in the direction E, then
Newton’s method for the quadratic matrix equations (1) with the given starting
matrix X0 can be written in the iteration form{

QXk
(Ek) = −Q(Xk),

Xk+1 = Xk + Ek,
where k = 0, 1, · · · .

Thus, each step of Newton’s method requires the finding of solution E of the
linear equation

QX(E) = −Q(X). (3)

The next theorem gives the conditions for the uniqueness of solution of the
matrix equation (3).

Theorem 2.1. ([8]) The Fréchet derivative QX is nonsingular iff

i) the pair (AX +B,−A) is regular (that is, det((AX +B) + λA) is not
identically zero in λ),

ii) λ(AX +B,−A) ∩ λ(X) = ∅.

If A is nonsingular, the condition i) holds. Now we give some sufficient
conditions for nonsingularity of QX at the Q(X) solvent X.

Lemma 2.2. ([8, Lem. 3.1]) If A is nonsingular then QX is nonsingular at

i) a dominant or minimal solvent S,
ii) all solvents S if the eigenvalues of Q(λ) = λ2A + λB + C(λ ∈ C) are

distinct.

To solve (3) we can apply several method for solving the generalized Sylvester
equation described by Chu [1], Epton [5], Gardiner, Laub, Amato and Moler
[6] and Golub, Nash and Van Loan [7]. Here, we describe a Schur algorithm
for solving equation (3) which is proposed by Davis [2, 3]. First, we compute
the Schur decomposition of X ∈ Cn×n,

W ∗XW = T,

where W is unitary and T is upper triangular. Then, compute the generalized
Schur decomposition of the matrices AX +B and A,

M∗(AX +B)N = H, M∗AN = J,

where M and N are unitary, H and J are upper triangular.
Equating the kth columns and rearranging leads to

(H + tkkJ) yk = gk −
k−1∑
i=1

tikJyi, Y =
[
y1 y2 · · · yn

]
.

By solving these upper triangular systems in the order of k = 1, · · · , n, Y can
be obtained by column at a time.
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3. Skew-symmetric solvents of the quadratic matrix equation Q(X)

Now, we present an algorithm to find skew-symmetric solution of the q-th
Newton iteration (3).

Algorithm 1. The matrices A,B,C ∈ Rn×n and skew-symmetric matrix Xq ∈
Rn×n are given. Iteration is started at skew-symmetric matrix Eq0 ∈ Rn×n.
k = 0; R0 = −Q (Xq)− (AXq +B)Eq0 −AEq0Xq

Y0 = (AXq +B)
T
R0 +ATR0 (Xq)

T

Q0 =
1

2

(
Y0 − Y T

0

)
γ0 =

‖R0‖2

‖Q0‖2
while Rk 6= 0

γk =
‖Rk‖2

‖Qk‖2
Eqk+1

= Eqk + γkQk

Rk+1 = Rk − γk [(AXq +B)Qk +AQkXq]

Yk+1 = (AXq +B)
T
Rk+1 +ATRk+1 (Xq)

T

δk =
tr (Yk+1Qk)

‖Qk‖2

Qk+1 =
1

2

(
Yk+1 − Y T

k+1

)
+ δkQk

end.

Note that, the matrices Eqk and Qk in Algorithm 1 are all skew-symmetric.
From Algorithm 1, we directly obtain the following basic lemmas.

Lemma 3.1. Assume that the q-th Newton iteration (3) is consistent. The
sequences {Rk} and {Qk} are generated by Algorithm 1, and the integer number
l ≥ 0 such that ‖Rk‖ 6= 0 for all k = 0, 1, · · · , l. Then, we have

tr
(
RT

k Rj

)
= 0 and tr

(
QT

k Qj

)
= 0 for k > j = 0, 1, · · · , l. (4)

Proof. We prove this theorem by principle induction.
Step 1. When l = 1, from Algorithm 1 we obtain

tr
(
RT

1 R0

)
= tr

{
[R0 − γ0 (AXq +B)Q0 − γ0AQ0Xq]

T
R0

}
= tr

(
RT

0 R0

)
− γ0tr

{
[(AXq +B)Q0 +AQ0Xq]

T
R0

}
= ‖R0‖2 − γ0tr

{
QT

0

[
(AXq +B)

T
R0 +ATR0 (Xq)

T
]}

= ‖R0‖2 − γ0tr
(
QT

0 Y0
)

= ‖R0‖2 − γ0tr

(
QT

0

Y0 − Y T
0

2

)
= ‖R0‖2 − γ0‖Q0‖2

= 0,
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and

tr
(
QT

1 Q0

)
= tr

[(
Y1 − Y T

1

2
+ δ0Q0

)T

Q0

]
= tr

(
Y T
1 Q0

)
+ δ0‖Q0‖2

= tr
(
QT

0 Y1
)

+ tr (Y1Q0)

= −tr (Y1Q0) + tr (Y1Q0)

= 0.

Suppose that the result (4) holds for l = s. Then, when l = s+ 1

tr
(
RT

s+1Rs

)
= tr

{
[Rs − γs (AXq +B)Qs − γsAQsXq]

T
Rs

}
= tr

(
RT

s Rs

)
− γstr

{
[(AXq +B)Qs +AQsXq]

T
Rs

}
= ‖Rs‖2 − γstr

{
QT

s

[
(AXq +B)

T
Rs +ATRs (Xq)

T
]}

= ‖Rs‖2 − γstr
(
QT

s Ys
)

= ‖Rs‖2 − γstr
(
QT

s

Ys − Y T
s

2

)
= ‖Rs‖2 − γs‖Qs‖2 − γsδs−1tr

(
QT

s Qs−1
)

= 0,

and

tr
(
QT

s+1Qs

)
= tr

[(
Ys+1 − Y T

s+1

2

)T

Qs

]
+ δstr

(
QT

s Qs

)
= tr

(
Y T
s+1Qs

)
+ δs‖Qs‖2

= tr

{[
(AXq +B)

T
Rs+1 +ATRs+1 (Xq)

T
]T

Qs

}
+ δs‖Qs‖2

= tr
{
RT

s+1 [(AXq +B)Qs +AQsXq]
}

+ δs‖Qs‖2

= tr

[
RT

s+1

1

γs
(Rs −Rs+1)

]
+ δs‖Qs‖2

= − 1

γs
tr
(
RT

s+1Rs+1

)
+ δs‖Qs‖2

= 0.

Step 2. Assume that tr
(
RT

s Rj

)
= 0, tr

(
QT

s Qj

)
= 0 for all j = 0, 1, · · · , s− 1.

We show that tr
(
RT

s+1Rj

)
= 0 and tr

(
QT

s+1Qj

)
= 0 for j = 0, 1, · · · , s− 1.

From Algorithm 1 and accompanying assumptions, we have

tr
(
RT

s+1Rj

)
= tr

(
RT

s Rj

)
− γstr

{
[(AXq +B)Qs +AQsXq]

T
Rj

}
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= −γstr
{
QT

s

[
(AXq +B)

T
Rj +ATRj (Xq)

T
]}

= −γstr
(
QT

s Yj
)

= −γstr

(
QT

s

Yj − Y T
j

2

)
= −γstr

[
QT

s (Qj − δj−1Qj−1)
]

= −γstr
(
QT

s Qj

)
+ γsδj−1tr

(
QT

s Qj−1
)

= 0,

and

tr
(
QT

s+1Qj

)
= tr

[(
Ys+1 − Y T

s+1

2

)T

Qj

]
+ δstr

(
QT

s Qj

)
= tr

(
Y T
s+1Qj

)
= tr

{[
(AXq +B)

T
Rs+1 +ATRs+1 (Xq)

T
]T

Qj

}
= tr

{
RT

s+1 [(AXq +B)Qj +AQjXq]
}

=
1

γj
tr
[
RT

s+1 (Rj −Rj+1)
]

= 0.

Thus, the result (4) holds for l = s+ 1. Therefore, from Step 1 and Step 2 we
complete the proof. �

Remark 1. If there exists a positive number l such that Rk 6= 0 for all k =
0, 1, · · · , l, then the sequence {Rk} which is generated by Algorithm 1 is or-
thogonal set.

Lemma 3.2. Let Eq be a skew-symmetric solution of the q-th Newton iteration
(3), then

tr
[
QT

k (Eq − Eqk)
]

= ‖Rk‖2, for k = 0, 1, · · · . (5)

Proof. We prove the statement (5) by principle induction.
When k = 0, from Algorithm 1 we have

tr
[
QT

0 (Eq − Eq0)
]

= tr

[(
Y0 − Y T

0

2

)T

(Eq − Eq0)

]
= tr

[
Y T
0 (Eq − Eq0)

]
= tr

{[
(AXq +B)

T
R0 +ATR0 (Xq)

T
]T

(Eq − Eq0)

}
= tr

{
RT

0 [(AXq +B) (Eq − Eq0) +A (Eq − Eq0)Xq]
}
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= tr
{
RT

0 [−Q(Xq)− (AXq +B)Eq0 −AEq0Xq]
}

= ‖R0‖2.

Assume that the statement (5) holds for k = l, i.e., tr
[
QT

l (Eq − Eql)
]

= ‖Rl‖2.
Therefore, we can easily check that

tr
[
QT

l

(
Eq − Eql+1

)]
= tr

[
QT

l (Eq − Eql)
]
− γltr

(
QT

l Ql

)
= 0.

From this fact, we obtain

tr
[
QT

l+1

(
Eq − Eql+1

)]
= tr


[
Yl+1 − Y T

l+1

2
+ δlQl

]T (
Eq − Eql+1

)
= tr

[
Y T
l+1

(
Eq − Eql+1

)]
+ δltr

[
QT

l

(
Eq − Eql+1

)]
= tr

{[
(AXq +B)

T
Rl+1 +ATRl+1 (Xq)

T
]T (

Eq − Eql+1

)}
= tr

{
RT

l+1

[
(AXq +B)

(
Eq − Eql+1

)
+A

(
Eq − Eql+1

)
Xq

]}
= tr

{
RT

l+1

[
−Q(Xq)− (AXq +B)Eql+1

−AEql+1
Xq

]}
= ‖Rl+1‖2,

which completes the proof. �

Remark 2. Lemma 3.2 implies that, the q-th Newton iteration (3) has a skew-
symmetric solution if Rk 6= 0 leads to Pk 6= 0 for some integer number k.
However, if Pk 6= 0 and Rk = 0, then the equation (3) is inconsistent.

Theorem 3.3. If the q-th Newton iteration (3) has a skew-symmetric solution,
then for a skew-symmetric starting matrix Eq0 , a skew-symmetric solution can
be obtained, at most, in n2 steps.

Proof. Let Rk 6= 0 for all k = 0, 1, · · · , n2 − 1. Then from Lemma 3.1, the set
{R0, R1, · · · , Rn2−1} is an orthogonal basis of the matrix space Rn×n. Since,
the q-th Newton iteration (3) has a skew-symmetric solution, Qk 6= 0 for k
by Lemma 3.2. Therefore, we can evaluate Eqn2 and Rn2 from Algorithm

1, and tr
(
RT

n2Rk

)
= 0 for k = 0, 1, · · · , n2 − 1 by Lemma 3.1. However,

tr
(
RT

n2Rk

)
= 0 holds only when Rn2 = 0, which implies that Eqn2 is a solution

of the q-th Newton iteration. By Algorithm 1, it is natural that Eqn2 is a
skew-symmetric matrix. �

From Newton’s method and Theorem 3.3, we obtained the following conver-
gence theory.

Theorem 3.4. Assume that the quadratic matrix equation (1) has a skew-
symmetric solvent and each Newton iteration is consistent for a skew-symmetric
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starting matrix X0. The sequence {Xk} is generated by Newton’s method with
X0 such that

lim
k→∞

Xk = S,

and the matrix S is the solvent of Q(X), then S is a skew-symmetric matrix.

Proof. Let E0, E1, · · · , Ek be skew-symmetric solution of first, second, · · · , kth
Newton iteration, respectively. Then, from Newton’s method we can obtain
(k + 1)th approximation matrix

Xk+1 = X0 + E0 + · · ·+ Ek,

which is also skew-symmetric. Since, the Newton sequence {Xk} converges to
a solvent S, so, it is a skew-symmetric solvent. �

4. Numerical experiments

The relative residual ρQ(Xk) and ρP (Xk), stop condition ‖Rk‖ are same as
in Section 4.3. We first consider the quadratic matrix equation

Q1(X) ≡ X2 +

[
−1 −1
1 −1

]
X +

[
0 1
−1 0

]
= 0 (6)

which is dealt by Dennis, Traub and Weber [4]. It has an infinite number of
solvents which have a form:[

1 0
0 1

]
,

[
i 0

−1− i 0

]
,

[
−i 0
−1 + i 1

]
,

[
−z − 1− i i(z − 1)
iz − 1 z

]
,

[
−z + 1 + i −i(z − 1)
−zi− 1 z

]
,

[
0 1
−1 0

]
,

[
1 + i i
−1 0

]
,

[
1− i −i
−1 0

]
, (7)

where i =
√
−1 and z ∈ C. There are three skew-symmetric solvents in (6),

that is, [
1
2 + 1

2 i −
1
2 −

1
2 i

1
2 + 1

2 i
1
2 + 1

2 i

]
,

[
0 1
−1 0

]
,

[
− 3

2 −
1
2 i

1
2 −

1
2 i

− 1
2 + 1

2 i
1
2 −

1
2 i

]
.

Since our researches are progressed in real matrix spaces, we examine a skew-

symmetric solvent S =

[
0 1
−1 0

]
. First, we select the skew-symmetric starting

matrix X0 =

[
0 1.001

−1.001 0

]
. It is sufficiently close to S, since a scalar

number ‖S − X0‖ ≈ 4.4721e − 005 can be sufficiently small. Sure enough
we expected, the skew-symmetric solvent S can be obtained using Newton’s
method with Algorithm 1 with the starting matrix X0. The convergence result
is displayed in Table 1.
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No.iterations ρQ(Xk) of Newton’s method

1 1.41e− 007
2 3.54e− 014
3 1.26e− 016

Table 1. The relative residual of problem (6).

Next, we consider when the Fréchet derivative is singular. Let the quadratic
matrix equation be

Q2(X) ≡
[
1 −1
1 −1

]
X2 +

[
0 −4
0 −4

]
X +

[
5 −25
5 −25

]
=

[
0 0
0 0

]
. (8)

Starting Newton’s method with Algorithm 1 at the matrix

[
0 4
−4 0

]
, then we

can be obtained a skew-symmetric solvent

[
0 5
−5 0

]
. Figure 1 shows our New-

ton’s method with the starting matrix converges to a solvent. Therefore, we
can know without difficulty this starting matrix enough close to the solvent.

1 2 3 4
10−15

10−10

10−5

100

Number of iterations.

Re
la

tiv
e 

Re
sid

ua
ls.

Figure 1. The convergence result for problem (8) with skew-
symmetric matrices.

In this paper, we introduced a iterative method for solving Newton steps (3)
and (3) over skew-symmetric. Then we incorporated the method into Newton’s
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method to find the skew-symmetric solvent. Our algorithm can be worked even
if the Fréchet derivative is singular.
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