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New Direct Kinematic Formulation of 6 D.O.F Stewart-Gough
Platforms Using the Tetrahedron Approach

Se-Kyong Song and Dong-Soo Kwon

Abstract: The paper presents a single constraint equation of the direct kinematic solution of 6-dof (Stewart-Gough) platforms. Many
research works have presented a single polynomial of the direct kinematics for several 6-dof platforms. However, the formulation of
the polynomial has potential problems such as complicated formulation procedures and discrimination of the actual solution from all
roots. This results in heavy computational burden and time-consuming task. Thus, to overcome these problems, we use a new formu-
lation approach, called the Tetrahedron Approach, to easily derive a single constraint equation, not a polynomial one, of the direct
kinematics and use two well-known numerical iterative methods to find the solution of the single constraint equation. Their perform-
ance and characteristics are investigated through a series of simulation.

Keywords: direct kinematics, tetrahedron, Stewart-Gough platform and parallel manipulator

1. Introduction

Many of robotic manipulators have used 6-dof (Stewart-
Gough) platforms which generally possess low inertia effect,
high rigidity, high local dexterity and compact size. The plat-
form consists of two rigid plates (the moving and the base
platforms) and six actuating links that provide up to 6-dof for
the moving platform with respect to the base platform. There
exist various types of the platform according to arrangements
of the connecting joints on the moving and the base platforms
[1]. Recently, in much of research, they have been widely
called as 3-6, 4-5, 4-6 and 6-6 platforms. ,

The direct kinematics of the platform is to determine the
posture of the moving platform relative to a reference frame
fixed in the base platform when the lengths of the six actuating
links are given. As far as the authors are aware, the direct
kinematics solution (six generalized coordinates in Cartesian
space) is not possible to be expressed in an unique closed form
except for some highly specialized structure such as the 3-6
platform with a 3-2-1 type [2], because the direct kinematics is
highly complicated due to the existence of multi-closed kine-
matic loops between the six links and the moving and the base
platforms. In many previous works [3-8], the direct kinematics
has been formulated through matrix manipulations of the
multi-closed kinematic equations. This may increase the for-
mulation complexity.

The direct kinematics still has challenging problems such as
complicated formulation procedures and heavy computational
burden; it is difficult to perform derivation of the direct kine-
matics in view of kinematic analysis and real-time computa-
tion in determining the direct kinematic solution in view of
practical implementation.

In spite of these problems, the direct kinematics is inevita-
ble in the following application fields: tracking control [9],
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calibration/accuracy analysis [10,11] and model-based control
[12]. Especially, in the teleoperation and haptic applications,
the computational burden of solving the direct kinematics de-
grades the control bandwidth and results in deteriorating the
transparency due to the delay of the feedback transmission
[13,14].

Moving Piatform

Base Platform
a) b)
Fig. 1. Two tetrahedron configurations of the 3-6 Stewart-
Gough platform composed of three tetrahedrons with a)
three unknown variables and b) one unknown variable.

Base Platform

A number of formulation methods have been proposed for
the direct kinematics in the literature. Generally, the conven-
tional direct kinematics can be categorized in the following
two approaches for different purposes: the polynomial-based
and the numerical-iterative approaches [2]. The polynomial-
based approach is a method for reduction of the resulting con-
straint equations into a univariate high-order polynomial by
the elimination method [15]. All roots of the polynomial can
be found by using a root-solver such as NSolve in Mathemati-
ca™ [16]. Since each real root corresponds to an assembly
configuration of the mechanism, one can get the physical in-
sight on all possible kinematic configurations. Many research
works have been presented for the polynomial-based ap-
proach; for the 3-6 platform, Griffis ef. al [5], Innocenti et. al
{6] and Nanua et. al [17] presented a 16th-order polynomial in
the result of the direct kinematics for the 3-6 platform. For the
4-5 platform, Lin et. al obtained a 16th-order polynomial [18].
For the 4-6 platform, Chen and Song obtained a 16th-order
polynomial [4]. Innocenti presented a 32th-order polynomial
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by using five closed-loop equations [7]. For the 6-6 platform,
Sreenviasan ef. al [3] has shown that the direct kinematics
presented a 16th-order closed-form polynomial under the
geometric condition that the moving and the base platforms
are a similar plane. However, the polynomiai-based approach
requires extremely complicated formulation procedures.
Furthermore, since several numerical algorithms are available
to determine all roots of a polynomial [19,20], the determina-
tion of the actual solution among all roots is still a challenging
task. Root finding of a high-order polynomial is very sensi-
tive to the accuracy of the coefficients of polynomial [21].
Thus, this approach is much slower than numerical methods
based on numerical iteration such as the Newton-Raphson
(NR) method [22]. Thus the polynomial-based approach may
be appropriate for the design problem determining all the roots
of the polynomial rather than the actual solution.

Unlike the polynomial-based approach, the numerical-
iterative approach for numerical iteration has potentially been
known to be a method better suitable for real-time computa-
tion of the direct kinematics solution {22]. For the 3-6 plat-
form, the three-dimensional NR method has been widely em-
ployed for the practical application of the 3-6 platform. Liu et.
al [8] and Ku [23] proposed numerical procedures for the
three-dimensional NR method using three unknown angle
variables instead of a 16th-order closed-form polynomial.
However, the NR method has several potential problems such
as evaluation of the partial derivative matrix and calculation of
its inverse matrix.

Consequently, the numerical-iterative approach may be
more practical than the polynomial-based approach. The main
objectives of this research are to propose an efficient formula-
tion approach and a numerical scheme for robustness and real-
time computation of the direct kinematics. This research will
focus on the 3-6 platform in whose structure the advantage of
the proposed formulation approach is well exhibited.

This paper is organized as follows. In Section 2, we briefly
review the Tetrahedron Approach that we proposed. Section 3
presents the direct kinematic analysis for deriving a single
constraint equation using only one unknown length variable.
In Section 4, the characteristics of the two numerical iterative
methods are investigated for solving the single constraint
equation. Section 5 describes the numerical performance of
two numerical methods concerned with this paper.

I1. Tetrahedron approach for the direct kinematics

We proposed the Tetrahedron Approach for easy derivation
the direct kinematics of 6-dof parallel manipulators with a
tetrahedron structure [2]. In the Tetrahedron Approach, the
formulation procedure is simply reduced to a process of first
identifying a tetrahedron based on the geometric structure of
the linkages, and then using it as a basis for identifying and
piling up next tetrahedrons. From the viewpoint of the proce-
dure in solving the forward kinematics, the Tetrahedron Ap-
proach differs from the previous works that use tetrahedrons
[24,25].

The concepts mentioned above were proposed as the Tetra-
hedron Proposition and the Tetrahedron Theorem [2]. The

Moving Pilatform
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Fig. 2. The 3-6 platform with 3-2-1 type and its tetrahedron
configurations.

Tetrahedron Proposition is defined to uniquely identify a tet-
rahedron based on the geometrical relationship between the
moving and the base platforms. The Tetrahedron Theorem is
defined to be a sufficient and necessary condition that there
exists a unique closed-form solution of the direct kinematics
and is also used as a formulation guideline to perform the Tez-
rahedron Approach for solving the direct kinematics by using
the Tetrahedron Proposition.

Terminologies and notations used in this paper are defined
as follows: firstly, assume that there exist two vectors among
the six lines that compose a tetrahedron, as depicted in a tetra-
hedron of Fig. 1. A base is defined as the plane with two vec-
tors that can be expressed with respect to a known reference
coordinate. Three lines that lie on the base are called base
lines and their vectors are called base vectors. The three lines
that connect the base to a vertex are defined as space lines and
their vectors are called space vectors. The vertex rising above
the base from the three space lines is defined as a top vertex. A
set of three mutual-orthogonal unitary vectors formed from
two base vectors is called a refrahedron coordinate. A tetrahe-
dron that satisfies the Tetrahedron Proposition is called a di-
rectional tetrahedron.

[B]=[X.Y,Z] and [M}=[u,v,w] are defined as a base frame
fixed on the base platform and a moving frame attached on the
moving platform, respectively. 04 and Oy are the origins of
the moving and the base platforms, respectively. H is the posi-
tion vector of the moving platform with respect to the base
frame. L, is i-th link length. B; and A, indicate the i-th joints on
the moving and the base platforms. r and R are the radius of
the moving and the base platforms. The moving frame [M]
can be expressed with the three column vectors of the orienta-
tion matrix with roll(@), pitch(f) and yaw(y) angles with re-
spect to the base frame. The three mutual-orthogonal column
vectors are denoted by u, v and w in order: [R)=[u,v,w]. The
orientation matrix [R] is identical to the moving frame [M].

The Tetrahedron Proposition allows the successive selec-
tion of one of the binary choices of the tetrahedron coordinates
that are yielded in the process of piling vp directional tetrahe-
drons for solving the direct kinematics. Selecting one of the
binary choices is possible under considering a configuration
singularity and mechanical constraints such as linkage inter-
ference and spherical joint limitation. If additional space lines
need to satisfy the Tetrahedron Proposition, this deficiency
can be supplemented with unknown variables or extra sensors.
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Once three top vertices are found through the Tetrahedron
Approach, the direct kinematic solution is obtained from the
geometric constraints of the moving platform. If the deficiency
does not occur, the solution is determined in a unique closed
form. Otherwise, the solution can be found by using either the
polynomial-based or the numerical-iterative approach.

2.1. Unique closed-form solution

The great advantage of the Tetrahedron Approach is shown
in some parallel manipulators that satisfy ‘the Tetrahedron
Theorem. In this case, we can obtain a unique closed-form
solution of the direct kinematics [2].

Hunt and Primrose presented that the 3-6 platform with a 3-
2-1 type shown in Fig. 2 has eight solutions by using the Be-
zout theorem [1]. Bruyninckx [24] and Ryu and Cho [26] ob-
tained eight solutions through complicated formulation proce-
dures. However, by using the Tetrahedron Approach, we can

obtain a unique closed-form solution directly. As shown in Fig.

2, the geometric structure of the 3-6 platform can be broken
into three directional tetrahedrons that all satisfy the Tetrahe-
dron Proposition. Thus the three top vertices (A,Az,A3) are
be uniquely determined. This condition satisfies the Tetrahe-
dron Theorem. Consequently, the position and orientation of
the moving platform can be represented in the following
unique closed form by geometry of the moving platform:

Position: H=[x T=A., (1a)
[x. y, 2] .

(2A,-A,-A) ve (A,-A)

3r .‘/gr

Orientation: u = ,w=uxv.(1lb)

III1. Derivation of a single constraint equation with
one unknown variable

This Section proposed a new formulation approach for de-
riving a single constraint equation of the direct kinematics of
the 3-6 platform.

In view of tetrahedron configurations, it is possible to pile
up several tetrahedron configurations of the 3-6 platform that
are composed of three tetrahedrons, like two cases shown in
Fig. 1. We dramatically reduced the formulation complexity of
the direct kinematics by which the three position vectors
(A1,A2,A;3) are expressed in the base frame and their lengths
are established as unknown variables, as shown in the left side
of Fig. 1 [27]. However, using three unknown variables re-
quires the three-dimensional Newton-Raphson (NR) method
for solving three constraint equations. The three-dimensional
NR method has some problems such as evaluation of the 3x3
partial derivative matrix and computation of its inverse matrix
at each iterative step.

Therefore, in order to avoid using the three-dimensional NR
method, we reconfigure the 3-6 platform into a different tetra-
hedron configuration with only one single variable, as shown
in the right side of Fig. 1. As a result, three constraint equa-
tions are reduced into a single constraint equation, not a poly-
nomial one. To the best of the author knowledge, the deriva-
tion of a single constraint equation of the direct kinematics has
been not yet presented in the literature.

When one unknown length variable (4,) is added to identify
the first tetrahedron that includes four vertices (A1,B1, B2,B3),

}~ Third
Tap Vertex

Fig. 3. Tetrahedron configurations with an single unknown
variable.

the three top vertices (Aj,A;,A5) can be readily obtained as
functions of A; by using the Tetrahedron Approach. The for-
mulation procedure for deriving a single constraint equation is
different to one of the polynomial-based approach for deriving
a single polynomial.

As shown in Fig. 3, in the first tetrahedron, the space vector
(1) and the top vertex (A;) are uniquely obtained with respect
to a tetrahedron coordinate [e;;,e2,€13]:

Ly=Lye,+Lje,+Lse;, A =L +B, €3
where
e, = le , e, = ‘(Bll ) eu)eu + Bn ,
”le i H_ (B31 €y )en + B31||

e, =e xe,=27Z.

The components of L, are given by:

2 2 2
L _Ll + B, -L,
Y
21
2 2 2
L. = L+ By =4 —2L;;(By;-eyy) 3)
2 2(By;-ep)

2 2 2 2
Ly =L"-L,"-L,".

In Eq. (3), Li> and L5 are functions of A2

Next, the second tetrahedron coordinate [es1,e5,€2:] is de-
fined to identify the second tetrahedron that includes four ver-
tices (A1,A2,B3,B4):

B43 _(}'1 ) e21)e21 + 2“1
e =TT e T o e
) |B43 “_ ()“J'ezx)ezx +)“x"
€3 =€ X€yy s 4
where
=L, ~B.

The third tetrahedron coordinate [es;,es;,es3] is defined to
identify the third tetrahedron that includes four vertices
(A1,A3,B5,B¢) :

- 65 - _(pz'ezl)e31+p2
o "B“S ” Pt ||_ (p2 c€y )e31 + pz” |
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€33 = €3 X €5, (4b)
where
p.=L;-By.

p: is a base vector in the third tetrahedron. Then two space
vectors (Ls,Ls) and two top vertices (A;,A3) are obtained with
respect to two tetrahedron coordinates, respectively:

Lj = Ly€5 + Lyey + Lyzey, Ay=L;+B;, (52)
Ls = L5y, + Lyey, + Lyzeyy s, A;=Ls+Bs, (5b)
where

LY+ By - L)
31 _‘_‘234"‘_3 g

sz + l12 - A212 ~2Ly5, (3 ey)
2(h-€p)

Ly =

2 2 2 2
Ly" =Ly =Ly~ Ly,",

_ L’ + Bys® — Ly’

L —— T
51 2B,
2, 52 2
52=L5 Py~ Ay~ 215 (o ey)
2(p;-e3)

2 2 2 2
Ls;" =Ls"~Ls;" - Ls,"

Here, Bj; and A are norms of the difference of two position
vectors (B; — B)) and (A; — A, respectively. Lsp, L33, Ls; and
Lss are functions of A;°.

This approach needs to include if-else statements because
the dot-product signs are determined to be either positive or
negative according to the angles between two adjacent vectors.
For the first tetrahedron, if-else statements are expressed as
follows:

. 2 2 2

+1,B,,1 + B, 2 ,
LI'B21=Q l’l 21 f 1’12 212 L22 (63)

l—Lszl,elseLl +By <L,

E + L Byy-eq + LBy e, if le +By’ 2 /112’ (6b)
2
—LyByy-ey — L;Bs €y, else L7+ By’ <A’

|

A single constraint equation can be expressed as follows:

LI'BCH:

G(h)=C*=(A;=A,)- (A;=A;)=0. )

C is a constraint that is a distance between A; and A- fixed on
the moving platform.

We will introduce two well-known numerical iterative
methods for finding the solution of the resulting single con-
straint equation. They are the one-dimensional NR and the
Secant (S) method. When an error value exist within the pre-
scribed convergence tolerance, the three position vectors
(A1,A3,A53) on the moving platform are obtained by which the
final calculated value is sequentially substituted into Egs. (2),
(4a) and (4b). Accordingly, the position (H) and the orienta-
tion [u,v,w] of the moving platform is determined from:

Position: H =(A1+ A+ A3)/3, (8a)

A- -A
Orientation: u = — H L v= (A, 5)

r V3r

,w=uxv. (8b)

IV. Numerical iterative methods for solving the
direct kinematics
In this Section, we investigate two numerical iterative
methods to find the actual solution of the resulting single con-
straint equation derived in Section 3. The one-dimensional NR
method is expressed in a simple form:

GA[nD)
dGldi’

1A [n+1]- A, [n] Il < Convergence tolerance. (9b)

Aln+11=R[n]~ (92)

dG/dA, is a derivative in term of 4,.

Generally, the NR method exhibits good convergence under
circumstances that initial estimate values lie inside the vicinity
of the actual solution and the gradients of constraint equations
are moderate near the region. Otherwise, the NR method in-
volves potential problems such as oscillating, diverging [19].
Since the single constraint equation (G) is highly nonlinear,
thus it includes more local minima, compared to the three con-
straint equations [27]. At such local minima, the inverse of the
derivative is diverged. This implies that the numerical per-
formance of the NR method is strongly sensitive to initial es-
timate value and nature of the resulting constraint equation.
Additional potential problem in implementing is evaluation of
the partial derivative matrix. The derivative of the resulting
single constraint equation is extremely difficult to evaluate
due to including many nonlinear terms.

In this case, we see that it is appropriate to introduce the §
method because they need not the derivative in the process of
finding the root [19,20,28]. In a finite region where the gradi-
ent of the resulting equation is moderate, the derivative can be
approximated by the following finite divided difference, that is
a linear interpolation:

Gln) - GAy[n—1) _ dG
Mln)-A[n-1] dA,

Thus this approximation can be substituted into the formula
(9) to yield the following one:

10)

Alnl-An-1]
GA[n]) = GPqln—1D)

Aln+1]=A[n]l-Glnl) an

This equation is called the § method that requires two initial
estimates of A;{1] and A,[0). Though the S method is also po-
tential problems such as diverging, it is less sensitive than the
NR method.

In view of the convergence speed, it has been known that
the NR method is quadratic and the S method is approximately
1.62 [28]. The NR method is most wisely used due to its prop-
erty of quadratic convergence. However, it potentially has
several shortcomings as mentioned above. In this case, the §
method is preferable. Generally, the convergence speed of the
S method is slower than one of the NR method in initial itera-
tion steps due to the property of the finite difference approxi-
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mation. However, as an updated value approaches the actual
solution, the difference approximate of the S method may ex-
hibit better performance of convergence speed than the deriva-
tive of the NR method [19,20,28].

Practically, the total computation time of the direct kinemat-
ics is determined by the multiplication of the number of itera-
tions for finding the actual solution by the computational bur-
den caused by the number of the calculating terms at each
iteration. Thus the S method has great advantage of easy im-
plementation and reduction of the number of the calculating
terms over the three-dimensional NR method that has been
used in [27]. However, the convergence speed of the S method
depends on the location of two initial estimate values that thus
needs to be carefully selected in the vicinity of the actual solu-
tion.

V. Numerical examples

This section presents comparison between the convergence
and performance of the three dimensional NR in [27], the one-
dimensional MR and the S method in Section 4.

As addressed in Section 4, the three numerical methods
make different numerical performance according to the nature
of the resulting equation. At first, we investigate the contour
shape of the single constraint equation (G) in Eq. (7). After-
ward, their convergences are investigated through a series of
simulation results under several initial estimate values.

Without loss of generality, the joint positions are given un-
der the assumption that the 3-6 platform is symmetrically ar-
ranged in each circular plane of the moving and the base plat-
forms:

x10* RelG (A

-2
[o) 20 40 80 80 100 120 140 160 180 200
2

x10° Im |G (A)]

6 — T T b b 7

4’,,.>...>._..........._...'..
;

-] T Tt T T I

. . : e
0 s s .lmlG(-hH—Op.fmwlm;_paiAw‘A | J
,."" ' . .
-2 S e = R | I 1 i
o 20 40 80 80 100 120 140 160 180 200

A

Fig. 4. Real and imaginary contours of the single constraint
equation at the parallel and arbitrary configurations.

B, =[R00]", B, =R(60°/)B, , fori=12345 (12a)
A =[r00f, A, =RU20°HA,. forj=123 (12b)
R = 80mum, r = 40mm.

When the moving and the base platforms are parallel, the
six Cartesian coordinates are given by:
a=0",=0,y=0,H=[0,0,80]" (13)

In this condition, lengths of the six links are determined as L,
=94, 114mm through the inverse kinematics.

Consider the following arbitrary configuration of the plat-
form:

a=10°, =20,y = 10", H = [20,-20,80]". (14)

Assume that the three unknown variables (A;) are arbitrary
varying in the following wide ranges under considering the
mechanical constraints of the 3-6 platform such as spherical
joint limitation:

A’minz La x 0.1< 2'17 2’2’ 2'3 < Lo X 19= A’max- (15)

In the above parallel and arbitrary configurations, the con-
tour of the single constraint equation is displayed as shown in
Fig 4. The real and the imaginary plots of the single constraint
equation (G) are obtained when the unknown variable is vary-
ing (0<A,<200). Fig. 4 shows that the single constraint equa-
tion is highly nonlinear and includes imaginary values in the
entire range. Imaginary contours (Im[G(4,)]) result from the
imaginary values of Lis, L33 and Ls;. Fig. 4 also shows the
existence of two feasible solutions that are the actual and the
reflective solutions of the 3-6 platform. One of them may be
converged to the actual solution by carefully choosing the ini-
tial estimate values.

When initial estimate values are 4,=120 or 140, the one-
dimensional NR method doesn’t converge after 200 steps, as
shown in the above side of Fig. 5. In cases of 4;= 80, 100 and
160, it diverges. Therefore, it is not practical to employ the
one-dimensional NR method for the single constraint equation.

In order to overcome this problem, we introduce the §
method because they are less sensitive to the nature of the
single constraint equation. Assume that two initial estimate
values can be guessed from the contours of the tesulting single
constraint equation at first stage. For the § method, the several
initial estimate values are chosen as 4,[0] = 105, 100, 110, 120,
130 and A,[1] = 150 over a finite range of A;. It is surprising
that the S method displays no less good performance than the
three-dimensional NR method for the three constraint equa-
tions [26] irrespective of initial estimate values.

Actually, there exist the trade-offs between robustness and
convergence speed of several numerical iterative methods
such as the NR, S, False-position methods and ef. al. Thus, the
S method needs to be combined with strong points of other
numerical schemes, for example the False-position method
[19]. Tt is noted that the proposed formulation approach can be
also directly applicable to 6-dof platforms which require one
unknown variable for satisfying the Tetrahedron Theorem.

An advanced numerical scheme for solving the single con-
straint equation and applications of the proposed formulation
approach are currently underway by the authors and will be
reported in an upcoming paper.

VI Conclusions
We have presented a new efficient formulation approach,
based on the Tetrahedron Approach, for fast computation of
the direct kinematics of the 3-6 platform. We have investigated
the characteristics of the well-known two numerical iterative
methods to find a numerical scheme that is capable of quickly
finding the actual solution of the single constraint equation.
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Fig. 5. The iteration convergence of the direct kinematics according to different initial estimate values at the arbitrary configuration.

Even though the Newton-Raphson method has been known to
have quadratic convergence speed, it has potential problems
such as evaluation of the partial derivative matrix and compu-
tation of its inverse matrix at each iterative step. We have
shown that the Newton-Raphson method is very sensitive to
the nature of the constraint equation and the Secant method
has the advantage of good convergence and easy implementa-
tion.
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