• Title/Summary/Keyword: isotope

Search Result 1,499, Processing Time 0.028 seconds

Analysis of Toxic-PCBs in Sediment by Isotope Dilution HRGC/HRMS (Isotope Dilution HRGC/HRMS 방법을 이용한 저니토중 Toxic-PCBs 분석)

  • Jang, Seong-Ki;Choi, Duk-Il;Park, Sun-Ku;Kim, Kyung-Sup
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.550-557
    • /
    • 1999
  • This Analysis was conducted for 13 toxic-PCBs having TEF value among 209 PCBs isomers in sediment by isotope dilution HRGC/HRMS method. From the result, the recovery of surrogate standard was in the range of 71~99%. The concentration range for 13 toxic-PCBs in sediment was found to be 0.84~2.49 ng/g, among them the concentration levels of 2,2',3,3',4,4',5-HpCB(IUPAC No. 170) and 2,2',3,4,4',5,5'-HpCB(IUPAC No. 180) represented almost 50% of total concentrarion and that of 2,3,4,4,5-PeCB(IUPAC No. 114) showed over 10%. The TEQ concentration levelwas in the range of 0.38~2.63 pg-TEQ/g and 3,3',4,4',5-PeCB(IUPAC No. 126) concentration represented over 50% of total TEQ concentration.

  • PDF

Stable Isotope Studies for Constraining Water and Carbon Cycles in Terrestrial Ecosystems: A Review (안정 동위원소를 이용한 육상 생태계의 물과 탄소의 순환 연구: 재검토)

  • Lee Dongho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.15-27
    • /
    • 2005
  • The water and carbon cycles in terrestrial ecosystems are the essential database for better understanding of the causes and the current processes of climate change and for the prediction of its future change. CarboKorea and HydroKorea are dedicated research efforts to develop technologies to quantitatively interpret and forecast carbon/water cycles in typical landscapes of Korea. For this, stable isotope studies have been launched to genetically partition various components of carbon/water cycles in terrestrial ecosystems. From stable isotope studies, practical deliverables such as evaporation, transpiration and gross primary productivity (GPP) can be provided at scales from tower (footprint) to large watersheds. Such reliable field-based information will form an important database to be used for validation of the results from various eco-hydrological models and satellite image analysis which constitute main components of Carbo/HydroKorea project. Stable isotope studies, together with other relevant researches, will contribute to derive quantitative interpretation of carbon/water cycles in terrestrial ecosystems and support Carbo/HydroKorea to become a leading research infrastructure to answer pending scientific and socio-economic questions in relation to global changes.

Source Tracking of Particular Matters using Stable Isotope Analysis and Water Quality Characteristics in Gulpo and Anyang Stream, Han-River (한강수계 굴포천과 안양천에서 안정동위원소와 수질 특성을 이용한 입자성 물질의 기원 추적)

  • Hong, Jung-Ki;Im, Jong Kwon;Son, Ju Yeon;Noh, Hye-Ran;Yu, Soon-Ju;Lee, Bo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.2
    • /
    • pp.116-124
    • /
    • 2020
  • This study aims to identify the characteristics of organic matter and pollutant sources using water quality and stable isotope ratios (δ15N, δ13C) of the two inflow tributaries (Gulpo (GP) and Anyang (AY) streams). Water samples were analyzed in June and September 2018, and the results showed that the concentrations of nutrients, such as TN and NO3-N, were increased at GP4, which is located at the downstream of sewage treatment facilities(STFs). TOC and TN ratios showed a strong positive correlation (R2 = 0.77, p<0.01) at all points except for GP4. The results of GP's stable isotope ratio analysis do not appear to be a constant cluster compared to AY because GPs with large amounts of pollutants from the industry (metal processing companies, etc.) have less tributary, shorter waterway and significantly different external sources. This could be attributed to different sources of external inflow despite its smaller number of tributaries and shorter waterways than AY. In the first half of the year, the δ155N of GP4 was affected by discharge of STFs, while AY3 seemed to have an influence of tributary than the discharge of STFs. Consequently, using water quality, stable isotope ratio and C/N, the sources of contamination in two streams with different contaminants were identified and origin was estimated.

Provenance Study on Lead Isotope of the Bronze Using a Korea Peninsula Lead Isotope Data - Focused on Bronze Relics Excavated from Cheonghaejin - (한반도 납광산의 납동위원소비를 이용한 청동 원료의 산지추정 - 청해진 출토 청동기를 중심으로 -)

  • Hwang, Jin Ju;Kim, So Jin;Han, Woo Rim;Han, Min Su
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.263-270
    • /
    • 2014
  • This paper was researched that provenance of the raw material for bronze relics excavated Cheonghaejin using the distribution of lead isotope ratio based on galena ores of South Korea. Also we want to make sure that the trace elements appearing as a by-product can be used as a secondary indicator for provenance research. In the case of the galena map of the East-North Asia (Mabuchi, 1985), data are plotted in China area. Therefore it is estimated that most bronzes were produced with lead ore from China. On the other hand, the same data are plotted in the Okcheon Metamorphic Belt and Yeongnam Massif of the galena map of South Korea (KOPLID, 2012). Also the contents of Ag and Sb are available as indicator due to separate ores from similar zone in lead isotope ratio.

A comparative study of ultra-trace-level uranium by thermal ionization mass spectrometry with continuous heating: Static and peak-jumping modes

  • Lee, Chi-Gyu;Park, Ranhee;Park, Jinkyu;Lim, Sang Ho
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1532-1536
    • /
    • 2020
  • For ensuring nuclear safeguards, we report the analytical signal-detection performance of thermal ionization mass spectrometry (TIMS) with continuous heating for the measurement of isotopic ratios in samples containing ultra-trace amounts of uranium. As methods for detecting uranium signals, peak-jumping mode using a single detector and static mode using multiple detectors were examined with U100 (10% 235U-enriched) uranium standard samples in the femtogram-to-picogram range. Uranium isotope ratios, n(235U)/n(238U), were measured down to levels of 1 fg and 3 fg in static and peak-jumping modes, respectively, while n(234U)/n(238U) and n(236U)/n(238U) values were measured down to levels of 100 fg in both modes. In addition, the dependency of the 238U signal intensity on sample quantity exhibited similar tendencies in both modes. The precisions of the isotope ratios obtained in the static mode over all sample ranges used in this study were overall slightly higher than those obtained in peak-jumping mode. These results indicate that isotope ratio measurements by TIMS with continuous heating are almost independent of the detection method, i.e., peak-jumping mode or static mode, which is characteristic of isotope-ratio measurements using the TIMS method with continuous heating. TIMS with continuous heating is advantageous as it exhibits the properties of multiple detectors within a single detector, and is expected to be used in various fields in addition to ensuring nuclear safeguards.

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage (수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가)

  • Lee, Jungmin;Park, Jongchul;Koo, Daeseo;Chung, Dongyou;Yun, Sei-Hun;paek, Seungwoo;Chung, Hongsuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.128-135
    • /
    • 2013
  • The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Investigation of Lead Isotope Ratios on Lead Artifacts Excavated from Mireuk Temple Site, Iksan (익산 미륵사지 출토 납제품의 납동위원소비 분석 고찰)

  • No, Ji-Hyun;Hirao, Yoshimitsu;Kim, Gyu-Ho;Noh, Gi-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.137-147
    • /
    • 2009
  • Mireuk temple site is located in Iksan, on the North Jeolla province in Korea, and confirmed tiles, potteries, metals, glasses and other materials that are remaining between Baekje Kingdom and Joseon period after excavations. It is also detected that production and supply of the materials in this era were started inside the country(domestic) at that time. This is important information for the understanding of the production and circulation systems. In this study, lead isotope ratios of 18 samples includedlead glass, crucibles and glazed rafter tiles excavated from Mireuk Temple Site of Baekje era were analyzed for the provenance study of raw glass material supply and distribution of glass products. The results of lead isotope ratio analysis have shown that all raw materials were located in the distribution area of Baekje region and also confirmed to be accord with the previous research results. As comparing the lead isotope ratios of glass and glass materials excavated from Mireuk Temple Site with Miyajidake tomb from Fukuoka Prefecture in Japan, it is found that the same raw materials were used for glass production. It means that there is the active connection between Mireuk temple site and Miyajidake and that these areas are sharing the same materials at the same period. It also shown that artifacts excavated from Miyajidake were strongly influenced from Baekje culture. And it is estimated that there is a possibility of the use ofsame materials whether the supplies of them are from a specific place of Baekje or not

  • PDF

A short study of uncertainty for post column isotope dilution method in HPLC-ICP/MS (HPLC-ICP/MS에서 후 컬럼 동위원소 희석법의 기초적인 불확도 연구)

  • Joo, Mingyu;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.269-276
    • /
    • 2014
  • A short study for the uncertainty of post column isotope dilution method has been performed for the analysis of Selenomethionine in HPLC-ICP/MS. Major error sources studied were concentration and the flow rate of Se isotope solution, atomic weights of Se in spike and sample, and isotope ratio measured for the spiked sample. Uncertainties were obtained for each factor and the contribution for the total concentration uncertainty was 54.4% and 0.61%, 0.0072% and 0.018%, and 45.0%, respectively. The biggest contribution factor was concentration of the spike solution and the second was the isotopic ratio measured for the spiked sample solution. The mass flow rate of spike and atomic weights did not show much contribution. The calculated total uncertainty was $1.46ng{\cdot}g^{-1}$ for the standard SeMet ($126.30ng{\cdot}g^{-1}$). The experimental result was $127.09{\pm}1.46ng{\cdot}g^{-1}$ and the relative uncertainty was 1.20%.

Enrichment of Lithium Isotope by an Ion Exchange Resin Containing Azacrown Ether (아자크라운 에터를 포함한 이온교환수지에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Chung, Yongsoon;Choi, Ki Young;Lee, Yong-Ill;Jeong, Young Kyu;Jang, Young Hun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.403-407
    • /
    • 1997
  • Separation factor for $^6Li$ and $^7Li$ have been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane($N_3O_3$) as an anchor group. The lighter isotope, $^6Li$ is concentrated in the solution phase, while the heavior isotope, $^7Li$ is enriched in the resin phase. By Ccolumnl chromatography[0.9cm(I.D)${\times}$20cm(height)] using 2.0M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.009. i.e.$(^7Li/^6Li)_{resin}$/$(^7Li/^6Li)_{solution}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Accurate determination of minor isotope ratios in individual plutonium-uranium mixed particles by thermal ionization mass spectrometry

  • Lee, Chi-Gyu;Park, Jinkyu;Lim, Sang Ho
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.140-144
    • /
    • 2018
  • Isotopic analyses of plutonium and low-enriched uranium mixtures with particle sizes of $0.6-3.3{\mu}m$ were performed using thermal ionization mass spectrometry with a continuous heating method to verify its effectiveness for the accurate analysis of minor isotopes without sample pretreatment. The mixed particles used in this study were prepared from a mixed solution of plutonium (SRM 947) and uranium (U010, $^{235}U$ 1% enriched) reference materials. The isotope ratios for plutonium in the individual mixed particles, including $^{238}Pu/^{239}Pu$, $^{241}Pu/^{239}Pu$ as well as $^{240}Pu/^{239}Pu$, and $^{242}Pu/^{239}Pu$, were in good agreement with the certified values despite the isobaric interference of $^{238}U$ and $^{241}Am$. The isotope ratios for uranium in the mixed particles also agreed well with the certified values within the range of error. However, the isotope ratios for minor isotopes, such as $^{234}U$ and $^{236}U$, in the particles with diameters of less than approximately $1.8{\mu}m$ could not be measured because numbers of $^{234}U$ and $^{236}U$ atoms in analyzed particles are too low. These results indicate that thermal ionization mass spectrometry with a continuous heating method is applicable for the analysis of trace amounts of plutonium isotopes, including $^{238}Pu$ and $^{241}Pu$, despite the presence of the respective isobars $^{238}U$ and $^{241}Am$ in the microsamples.