DOI QR코드

DOI QR Code

Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage

수소동위원소 저장용 ZrCo용기의 급속 냉각 성능 평가

  • 이정민 (한국원자력연구원 핵주기공정개발부) ;
  • 박종철 (한국원자력연구원 핵주기공정개발부) ;
  • 구대서 (한국원자력연구원 핵주기공정개발부) ;
  • 정동유 (국가핵융합연구소 ITER한국사업단) ;
  • 윤세훈 (국가핵융합연구소 ITER한국사업단) ;
  • 백승우 (한국원자력연구원 핵주기공정개발부) ;
  • 정흥석 (한국원자력연구원 핵주기공정개발부)
  • Received : 2013.03.19
  • Accepted : 2013.04.26
  • Published : 2013.04.30

Abstract

The nuclear fuel cycle plant is composed of various subsystems such as a fuel storage and delivery system (SDS), a tokamak exhaust processing system, a hydrogen isotope separation system, and a tritium plant analytical system. Korea is sharing in the construction of the International Thermonuclear Experimental Reactor (ITER) fuel cycle plant with the EU, Japan, and the US, and is responsible for the development and supply of the SDS. Hydrogen isotopes are the main fuel for nuclear fusion reactors. Metal hydrides offer a safe and convenient method for hydrogen isotope storage. The storage of hydrogen isotopes is carried out by absorption and desorption in a metal hydride bed. These reactions require heat removal and supply respectively. Accordingly, the rapid storage and delivery of hydrogen isotopes are enabled by a rapid cooling and heating of the metal hydride bed. In this study, we designed and manufactured a vertical-type hydrogen isotope storage bed, which is used to enhance the cooling performance. We present the experimental details of the cooling performances of the bed using various cooling parameters. We also present the modeling results to estimate the heat transport phenomena. We compared the cooling performance of the bed by testing different cooling modes, such as an isolation mode, a natural convection mode, and an outer jacket helium circulation mode. We found that helium circulation mode is the most effective which was confirmed in our model calculations. Thus we can expect a more efficient bed design by employing a forced helium circulation method for new beds.

Keywords

References

  1. S. Cho, M. Chang, S. Yun, H. Kang, K. Jung, H. ongsuk Chung, D. Koo, Y. Kim, J. Lee, K. Song, S. Sohn, K. Kim, D. Kim, "ITER storage and delivery system R & D in korea", IEEE Transactions on Plasma Science, Vol. 38, No. 3, 2010, pp. 425-433. https://doi.org/10.1109/TPS.2009.2039583
  2. H. Chung, D. Chung, D. Koo, J. Lee, M. Shim, S. Cho, K. Jung, S. Yun, "Storage and Delivery of Hydrogen Isotopes", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 372-379.
  3. H. Chung, K. Kang, M. Chang, S. Cho, W. Kim, J. Nam, D. Kim, K. Song, S. Paek, D. Koo, D. Chung, J. Lee, C. Kim, K. Jung and S. Yun, "Safety Analysis of a Hydrogen Isotopes Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 3, 2012, pp. 219-226. https://doi.org/10.7316/KHNES.2012.23.3.219
  4. D. Koo, H. Chung, D. Chung, J. Lee, S. Yun, S. Cho and K. Jung, "Hydrogen Isotopes Accountancy and Storage Technology", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 1, 2012, pp. 49-55. https://doi.org/10.7316/khnes.2012.23.1.049
  5. S. Yun, M. Chang, H. Kang, C. Kim, S. Cho, K. Jung, H. Chung and K. Song, "Tritium Fuel Cycle Technology of ITER Project", Trans. of the Korean Society of Hydrogen Energy, Vol. 23, No. 1, 2012, pp. 56-64. https://doi.org/10.7316/khnes.2012.23.1.056
  6. H. Chung, M. Shim, H. Yoshida, H. Jin, J. Lee, D. Ahn, K. Kim, K. Song, D. Kim, M. Chang, H. Kang, S. Yun, S. Cho, "Korea's progress on the ITER tritium systems", Fusion Engineering and Design, Vol. 84, 2009, pp. 599-603. https://doi.org/10.1016/j.fusengdes.2009.01.073
  7. M. Shim, H. Chung, S. Cho, H. Yoshida, "Disproportionation characteristics of a zirconium-cobalt hydride bed under ITER operating conditions", Fusion Science and Technology 53, 2008, pp. 830-840. https://doi.org/10.13182/FST08-26
  8. H. Chung, M. Shim, D. Ahn, M. Lee, C. Hong, H. Yoshida, K. Song, D. Kim, K. Jung, and S. Cho, "Korea's Activities for the Development of ITER Tritium Storage and Delivery Systems", Fusion Science and Technology, Vol. 54, 2008, p. 18. https://doi.org/10.13182/FST08-38
  9. M. Shim, H. Chung, H. Yoshida, H. Jin, M. Chang, S. Yun, and S. Cho, "Initial Test Results of a Fast Heat Transfer Response ZrCo Hydride Bed", Fusion Science and Technology, Vol. 56, 2009, p. 857.
  10. M. Shim, H. Chung, H. Yoshida, K. Kim, S. Cho, E. Lee, and M. Chang, "Experimental Study on the Delivery Rate and Recovery Rate of ZrCo Hydride for ITER Application", Fusion Science and Technology, Vol. 54, 2008, p. 27.
  11. M. Shim, H. Chung, H. Yoshida, H. Jin, J. Lee, K. Song, M. Chang, H. Kang, S. Yun, and S. Cho, "Hydriding/dehydriding Characteristics on Fast Heat Transfer Response ZrCo Bed for ITER", Fusion Engineering and Design, Vol. 84, 2009, p. 1763. https://doi.org/10.1016/j.fusengdes.2008.11.006
  12. J. Lee, J. Park, D. Koo, D. Chung, H. Chung, "Cooling Characteristics of a Hydrogen Storage Bed", Applied Chemistry, to be published, 2013.
  13. R. B. Bird. W. E. Stewart. E. N. Lightfoot. "Transport Phenomena" 2nd Ed. John Wiley & Sons, Inc. 2007.
  14. Yunus A. Cengel. "Heat Transfer: A Practical Approach" 2nd Ed. McGraw-Hill. 2003.
  15. R. Hosseini, A. Rezania, M. Alipour, L. A. Rosendahl, "Natural convection heat transfer from a long heated vertical cylinder to an adjacent air gap of concentric and eccentric conditions." Heat Mass Transfer 2012. 48. 55-60. https://doi.org/10.1007/s00231-011-0840-6
  16. Hussein Togun, Y.K. Salman, Hakim S. Sultan Aljibori, S.N. Kazi. "An experimental study of heat transfer to turbulent separation fluid flow in an annular passage." International Journal of Heat and Mass Transfer 54 (2011) 766-773. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.031

Cited by

  1. Hydrogen Absorption/Desorption and Heat Transfer Modeling in a Concentric Horizontal ZrCo Bed vol.24, pp.4, 2013, https://doi.org/10.7316/KHNES.2013.24.4.295
  2. Characteristics of a Hydrogen Isotope Storage and Accountancy System vol.26, pp.6, 2015, https://doi.org/10.7316/KHNES.2015.26.6.541
  3. Dehydriding Performance in a Depleted Uranium Bed vol.27, pp.1, 2016, https://doi.org/10.7316/KHNES.2016.27.1.022