• Title/Summary/Keyword: irrigated water

Search Result 287, Processing Time 0.029 seconds

Effects of Capillary Rise Interruption Layer on Salt Accumulation and Kentucky Bluegrass (Poapratensis L.) Growth in Sand Growing Media Established Over the Reclaimed Saline Soil (임해 간척지에서 모래상토 층에 모세관수 차단 층의 도입이 염류 집적과 켄터키블루그래스 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Proceedings of the Turfgrass Society of Korea Conference
    • /
    • 2011.02a
    • /
    • pp.5-8
    • /
    • 2011
  • This research was conducted to determine the effect of capillary rise interruption layer on the sand based growing media when growing Kentucky bluegrass under soil reclamation and saline water irrigation. Rootzone profile consists of three layers as top soil of 30 cm, 20 cm of capillary interruption layer and 10 cm of reclaimed paddy soil. Rootzone profile was packed in column pots. The top soil was a mixture of sand dredged up from Lake Bhunam Tae Ahn, Korea and peat at the ratio of 95:5 by volume. Bottom part of column was covered with plastic net and the pots were soaked into 5 cm depth saline water reservoir with salinity $3-5dsm^{-1}$. Kentucky bluegrass was installed by sod and irrigated using $2dSm^{-1}$ saline water(5.7mm $day^{-1}$)in 3days interval. The results showed that the largest accumulation of salt in the spring with ECe of $5.4dSm^{-1}$ and SAR34.0 in rootzone with out capillary rise interruption layer and ECe of $4.6dSm^{-1}$ and SAR8.24 at rootzone using gravel as capillary rise interruption layer material. Kentucky bluegrass grown in growing media with gravel as capillary rise interruption layer resulted in the average visual quality rate of 8.1and clipping dry weight of $24.8gm^{-2}$, while Kentucky bluegrass grown in the growing media with out capillary rise interruption layer showed the visual quality rate of 7.9 and clipping dry weight of $34g.m^{-2}$. Capillary rise interruption layer of gravel and coarses and enhanced the visual quality by 4.1and 4.0%, root length by 50 and 38%, and root dryweight by 35and 17% of Kentucky bluegrass, and reduced the accumulation of Na by 16% and 25%, ECe by 7% and 13% in the rootzone.

  • PDF

Effect of Irrigation Amounts on Growth and Yield of Rice in Desert Climates (인공사막환경에서 벼 재배시 관개량에 따른 생육 및 수량 특성 변화)

  • Jung, Ki-Youl;Lee, Sang-Hun;Jeong, Jae-Hyeok;Chun, Hyen-Chung;Oh, Seung-ka;Jeon, Seung-ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.3
    • /
    • pp.201-209
    • /
    • 2021
  • There is a growing interest in rice cultivation on farms with irrigation facilities in desert climates. We investigated the growth characteristics and yields of two rice cultivars (FL478 and Asemi) irrigated at field capacities (FCs) of 80%, 100%, and 120% in a lysimeter with coarse sandy soils. The results showed that at the heading stage, the FC 100% treatment had the highest plant height and number of tillers between the two cultivars. At the harvest period, the culm and panicle lengths of both cultivars at FC 100% were similar to those of the control. In contrast, the number of panicles, grain number per panicle, and percentage of ripened grains were the highest in the control. Moreover, FL478 and Asemi had the highest grain yields of 1.40 and 2.20 kg·pot-1 in the control, respectively. For both cultivars, the grain yields of the FC 100% and FC 120% treatments were approximately 70% of the control. In comparison, FL478 and Asemi had the highest water productivity of 0.45 and 0.63 kg·m3-1 for the FC 80% treatment, followed by the FC 100% treatment (0.42 and 0.59 kg·m3-1, respectively), which was nearly 14.3% and 20.3% higher than that of the control. Therefore, we found that irrigation at FC 100% is anticipated to be effective in managing surface drip irrigation for rice cultivation in desert climates in arid environments, while maintaining rice yields.

Physiological and Ecological Studies on the Low Temperature Damages of Rice (Oryza sativia L.) (수도의 저온장해에 관한 생리 생태학적 연구)

  • 오윤진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.1-31
    • /
    • 1981
  • Experiments were conducted to investigate rice varietal response to low water and air temperatures at different growth stages from 1975 to 1980 in a phytotron in Suweon and in a cold water nursery in Chooncheon. Germination ability, seedling growth, sterility of laspikelets, panicle exertion, discoloration of leaves, and delay of heading of recently developed indica/japonica cross(I/J), japonica, and indica varieties at low air temperature or cold water were compared to those at normal temperature or natural conditions. The results are summarized as follows: 1. Practically acceptable germination rate of 70% was obtained in 10 days after initiation of germination test at 15\circ_C for japonica varieties, but 15 days for IxJ varieties. Varietal differences in germination ability at suboptimal temperature was greatest at 16\circ_C for 6 days. 2. Cold injury of rice seedlings was most severe at the 3.0-and 3.5-leaf stage and it was reduced as growth stage advanced. A significant positive correlation was observed between cold injury at 3-leaf stage and 6-leaf stage. 3. At day/night temperatures of 15/10\circ_C seedlings of both japonica and I/J varieties were dead in 42 days. At 20/15\circ_C japonica varieties produced tillers actively, but tillering of I/J varieties was retarded a little. At 25/15\circ_C, both japonica and I/J varieties produced tillers most actively. Increase in plant height was proportional to the increase in all varieties. 4. In I/J varieties the number of differentiated panicle rachis branches and spikelets was reduced at a day-night temperature of 20-15\circ_C compared to 25-20 or 30-25\circ_C, but not in japonica varieties although panicle exertion was retarded at 20-15\circ_C. The number of spikelets was not correlated with the number of primary rachis branches, but positively correlated with that of secondary rachis branches. 5. Heading of rice varieties treated with 15\circ_C air temperature at meiotic stage was delayed compared to that at tillering stage by 1-3 days and heading was delayed as duration of low temperature treatment increased. 6. At cold water treatment of 17\circ_C from tillering to heading stage, heading of japonica, I/J, and cold tolerant indica varieties was delayed 2-6, 3-9, and 4-5 days, respectively, Growth stage sensitive to delay of heading delay at water treatment were tillering stage, meiotic stage, and booting tage in that order, delay of heading was greater in indica corssed japonica(Suweon 264), japonica(Suweon 235), and cold tolerant indica(Lengkwang) varieties in that order. Delay of heading due to cold water treatment was positively correlated with culm length reduction and spikelet sterility. 7. Elongation of culms and exertion of panicles of rice varieties treated with low air temperature 17\circ_C. Culm length reduction rate of tall varieties was lower than that of short statured varieties at low temperature. Panicle exertion was most severaly retarded with low temperature treatment at heading stage. Generally, retardation of panicle exertion of 1/1 varieties was more severe than that of japonica varieties at low temperature. There was a positive correlation between panicle exertion and culm length at low temperature. 8. The number of panicles was increased with cold water treatment at tillering stage, but reduced at meiotic stage. As time of cold water treatment was conducted at earlier growth stage, culm length was shorter and panicle exertion poorer. 9. Sterility of all rice varieties was negligible at 17\circ_C for three days but 30.3-85.2% of strility was observed for nine-day treatment at 17\circ_C. Among the tested varieties, sterility of Suweon 264 and Milyang 42 was highest and that of Suweon 290 and Suweon 287 was lowest. The most sensitive growth stage to low temperature induced sterility was from 15 to 5 days before heading. There was positive correlation between sterility of rice plants treated with low temperature at meiotic and heading stage. 10. Percentage of spikelet sterility was greatest at cold water treatment at meiotic stage (auricle distance -15~-10cm) and it was higher in 1/1 (Suweon 264, Joseng tongil), japonica (Nongbaek, Towada), and cold tolerance indica(Lengkwang) varieties in the order. Level of cold water and position of young-ear affected on the sterility of varieties at meiotic stage; percentage of spikelet sterility of variety, Lengkwang, of which young-ear was located above the cold water level was high, but that of short statured variety, Suweon 264, of which young-ear was located in the cold water was lower. 11. Percentage of ripened grains was not reducted at 15\circ_C air temperature for three days at full heading stage in all varieties. However, at six-day low temperature treatment Suweon 287, Suweon 264 showed percentage of ripended grains lower than 60%, but at nine-day low temperature treatment all varieties showed percentage of ripened grains lower than 60%. Low temperature treatment of 17\circ_C from 10 days after heading for 20 days did not affect on the ripening of all varieties. 12. Uptake of nitrogen, phosphorous, potassium, calcium, and magnesium in whole plants was higher at average air temperature of 25\circ_C, but concentration of the elements was lower compared to those at 19\circ_C. However, both total uptake and concentration of manganese were higher at 19\circ_C compared to 25\circ_C. 13. Higher application of nitrogen, phosphorus, silicate, and compost increased yield of rice due to increased number of panicles and spike let fertility in cold water irrigated paddy.

  • PDF

The responses of Growth and Physiological traits of Acer triflorum on Calcium Chloride ($CaCl_2$) Concentration (염화칼슘 농도에 따른 복자기의 생장 및 생리적 반응 특성)

  • Kwon, Min-Young;Kim, Sun-Hee;Sung, Joo-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.500-509
    • /
    • 2014
  • To prevent freezing of the road by fallen snow, Calcium chloride($CaCl_2$) as a deicer is used to very often and it can be harmful to roadside trees. This study was conducted to investigate the effects of Calcium chloride($CaCl_2$) as a deicer on growth and physiological traits of Acer triflorum according to different concentration of $CaCl_2$. We measured growth, chlorophyll contents, gas exchangement characteristics, chlorophyll fluorescence and mineral nutrition concentration in plant and soil. The experimental group was composed of four treatments including 0mM(control), 9mM(0.5 %), 18mM(1.0 %), 54mM(3.0 %). Before germinating new shoot, the dissolution of $CaCl_2$ was irrigated twice interval of a week. At 30 days after treatment, all treatments decreased total cholorophyll content, photosynthetic rate, transpiration rate, stomatal conductance and photochemical efficiency($F_v/F_m$) with increasing concentration of $CaCl_2$ and especially, they significantly reduced in 3.0 % treatment. In contrast, chlorophyll a/b ratio increased with an increase of $CaCl_2$ concentration and water use efficiency increased in 1.0 % and 3.0 % treatments. At 50 days after treatment, all treatments were decreased in chl a, chl b, total chlorophyll content, carotenoid content, photosynthetic capacity, photochemical efficiency($F_v/F_m$) and quantum yield of photosystem II(${\Phi}_{PSII}$) compared with control and 3.0 % treatments were withered. $Ca^{2+}$ and $Cl^-$ were accumulated in leaves and soil, which inhibited water absorption and electron transport and it caused the reduction of height growth rate more than 50 %. Although there was a little difference according to time and $CaCl_2$ concentration, all treatments decreased in growth rate and physiological activity slowed down. As time passed, these results got worse. Therefore we need to take a measure earlier in order to minimize damage of trees.

조해상습지대의 토지개량사업의 기여도조사연구

  • 이기춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1549-1560
    • /
    • 1969
  • When this experiment was treated with various factors of times and vacant intervals of intermittent irrigation in order to search for the effect on the growth of rice-plant and ti's amount of havestr, the following results were obtained during the period of this study. 1. Temperature was high, precipitution during nuturitive growing period, was suitable and Much rainfull, scanty sunlight during reproductive growing period and especially during decrease-sementation period, the cultivative situation of rice-plant of 1968 was almost similar to that of mean year. 2. It was found out that the quality of irrigated water used in the experioment was due to ti's neutural acidity. 3. The soil used in each experimental section was good for fertiligation and similar to the quality of general soil according to the result of soil analysis. 4. It was generally found out that the earlier times of intermittent irrigating and the longer vacant intervals of intermittent irrigation, the worse the growing condition of segmentation period was. 5. When vacant intervals of suspension of water supply were longer, the begining of being in ear of rice-plant ant the time tended to be late about one day. 6. In the view of the growth of maturity period and the amount of intermittent irrigation, it tended to be that the length of stalk of rice-plant was short when time of intermittent irrigation began earlier and the length of ear which came from any various section was not different. When times intermittent of irrigation began gradually early, the number of ears, grains and the weight of grains tended to decrease depending on times of that. All the growing of rice-plant and the amount of havesty tended to decrease, depending on which vacant intervals of intermittent irrigation were long. Finally, it was founedt out that from the point of view of the statistical analysis of weight of grains, it was more then 1% what highly significance of mutual action between times and vacant intermittent irrigation was researched.

  • PDF

Distribution of Foodborne Pathogens from Garlic Chives and Its Production Environments in the Southern Part of Korea (남부지방 부추와 재배환경의 식품매개병원균의 분포)

  • Jung, Jieun;Oh, Kwang Kyo;Seo, Seung-Mi;Yang, SuIn;Jung, Kyu-Seok;Roh, Eunjung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.477-488
    • /
    • 2020
  • Recently, foodborne illness outbreaks linked to fresh produce are being increasingly reported in the United States, the EU, and Korea as well. Some of this increase may be due to improved surveillance, increase in consumption, change in consumers' habits, and complex distribution systems. Garlic chive is a green, fresh-cut vegetable consumed year-round as a nutrition-rich herb in Korea. It is also prone to contamination with foodborne pathogens during pre-harvest, as amendment with high amounts of livestock manure or compost to soil is required in its cultivation. Our aim in this study was to evaluate microbial contamination of garlic chives, garlic chives cultivation soil, compost, and irrigation water in the southern part of Korea. Samples were collected in A, B, and C regions in 2019 and 2020, and 69, 72, 27, and 40 of garlic chives, soil, compost, and irrigated water, respectively, were analyzed for the presence of sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), Bacillus cereus, Staphylococcus aureus, pathogenic E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. In A, B, and C regions, levels of total aerobic bacteria, coliform, B. cereus, and S. aureus on all samples were between 1.14 and 8.83 log CFU/g, 0.43 and 5.01 log CFU/g, 0.41 and 5.55 log CFU/g, and 1.81 and 6.27 log CFU/g, respectively. B. cereus isolated from garlic chives and environmental samples showed β-hemolysis activity. Incidence of S. aureus in garlic chive and its production environments in 2020 was different from 2019. In this study, B. cereus and S. aureus were the only pathogenic microorganisms detected in all samples. As a result, this work suggests that continuous monitoring in the production and pre-harvest environment is required to improve hthe hygiene and safety of garlic chive.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

Modeling of Estimating Soil Moisture, Evapotranspiration and Yield of Chinese Cabbages from Meteorological Data at Different Growth Stages (기상자료(氣象資料)에 의(依)한 배추 생육시기별(生育時期別) 토양수분(土壤水分), 증발산량(蒸發散量) 및 수량(收量)의 추정모형(推定模型))

  • Im, Jeong-Nam;Yoo, Soon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.386-408
    • /
    • 1988
  • A study was conducted to develop a model for estimating evapotranspiration and yield of Chinese cabbages from meteorological factors from 1981 to 1986 in Suweon, Korea. Lysimeters with water table maintained at 50cm depth were used to measure the potential evapotranspiration and the maximum evapotranspiration in situ. The actual evapotranspiration and the yield were measured in the field plots irrigated with different soil moisture regimes of -0.2, -0.5, and -1.0 bars, respectively. The soil water content throughout the profile was monitored by a neutron moisture depth gauge and the soil water potentials were measured using gypsum block and tensiometer. The fresh weight of Chinese cabbages at harvest was measured as yield. The data collected in situ were analyzed to obtain parameters related to modeling. The results were summarized as followings: 1. The 5-year mean of potential evapotranspiration (PET) gradually increased from 2.38 mm/day in early April to 3.98 mm/day in mid-June, and thereafter, decreased to 1.06 mm/day in mid-November. The estimated PET by Penman, Radiation or Blanney-Criddle methods were overestimated in comparison with the measured PET, while those by Pan-evaporation method were underestimated. The correlation between the estimated and the measured PET, however, showed high significance except for July and August by Blanney-Criddle method, which implied that the coefficients should be adjusted to the Korean conditions. 2. The meteorological factors which showed hgih correlation with the measured PET were temperature, vapour pressure deficit, sunshine hours, solar radiation and pan-evaporation. Several multiple regression equations using meteorological factors were formulated to estimate PET. The equation with pan-evaporation (Eo) was the simplest but highly accurate. PET = 0.712 + 0.705Eo 3. The crop coefficient of Chinese cabbages (Kc), the ratio of the maximum evapotranspiration (ETm) to PET, ranged from 0.5 to 0.7 at early growth stage and from 0.9 to 1.2 at mid and late growth stages. The regression equation with respect to the growth progress degree (G), ranging from 0.0 at transplanting day to 1.0 at the harvesting day, were: $$Kc=0.598+0.959G-0.501G^2$$ for spring cabbages $$Kc=0.402+1.887G-1.432G^2$$ for autumn cabbages 4. The soil factor (Kf), the ratio of the actual evapotranspiration to the maximum evapotranspiration, showed 1.0 when the available soil water fraction (f) was higher than a threshold value (fp) and decreased linearly with decreasing f below fp. The relationships were: Kf=1.0 for $$f{\geq}fp$$ Kf=a+bf for f$$I{\leq}Esm$$ Es = Esm for I > Esm 6. The model for estimating actual evapotranspiration (ETa) was based on the water balance neglecting capillary rise as: ETa=PET. Kc. Kf+Es 7. The model for estimating relative yield (Y/Ym) was selected among the regression equations with the measured ETa as: Y/Ym=a+bln(ETa) The coefficients and b were 0.07 and 0.73 for spring Chinese cabbages and 0.37 and 0.66 for autumn Chinese cabbages, respectively. 8. The estimated ETa and Y/Ym were compared with the measured values to verify the model established above. The estimated ETa showed disparities within 0.29mm/day for spring Chinese cabbages and 0.19mm/day for autumn Chinese cabbages. The average deviation of the estimated relative yield were 0.14 and 0.09, respectively. 9. The deviations between the estimated values by the model and the actual values obtained from three cropping field experiments after the completion of the model calibration were within reasonable confidence range. Therefore, this model was validated to be used in practical purpose.

  • PDF

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF