DOI QR코드

DOI QR Code

저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops

  • 류남형 (경남과학기술대학교 조경학과) ;
  • 이춘석 (경남과학기술대학교 조경학과)
  • Ryu, Nam-Hyong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 투고 : 2013.09.03
  • 심사 : 2013.12.10
  • 발행 : 2013.12.31

초록

본 연구는 저토심 옥상녹화모듈의 빗물유출 및 도시열섬 저감효과를 정량적으로 평가하기 위해, 저토심 경사 평지붕 녹화모듈의 저류 및 증발산 특성을 규명한 것이다. 이를 위해 기린초를 식재한 라이시미터(깊이 100mm)를 4방향(동, 서, 남, 북)의 50% 경사 지붕과 평지붕 위에 구축하였다. 그리고 저토심 경사지붕 및 평지붕 녹화모듈을 대상으로 연간 수분보유량 및 저류량과 증발산량 그리고 옥상과 평지붕 녹화모듈의 표면온도를 2012년 9월 1일부터 2013년 8월 31일까지 1년간 연속적으로 측정하였다. 측정된 자료를 근거로 분석한 녹화모듈의 저류 및 증발산 특성은 다음과 같다. 경사지붕 녹화모듈의 수분보유량은 눈이 오는 겨울철을 제외하면 강우 직후 8.7~28.4mm까지 상승하였으며, 무강우 지속 시 3.3mm까지 저하하는 것으로 나타났다. 경사지붕 녹화모듈은 최대 22.2mm까지 강우를 저류했던 것으로 나타났다. 녹화모듈의 강우량 대비 강우 저류율 예측식은 경사지붕의 경우 [강우 저류율(%)=-18.37 ln(강우량(mm))+107.75, $R^2$=0.79], 평지붕의 경우 [강우 저류율(%)=-22.64 ln강우량(mm))+130.8, $R^2$=0.81]였다. 경사지붕 녹화모듈의 증발산량은 강우 후 경과일수에 따라 급격히 감소하였으며, 봄철과 가을철에는 로그함수형으로, 여름철에는 거듭제곱함수형으로 감소하였다. 그리고 경사지붕 녹화모듈의 강우 후 일증발산량은 여름 > 봄 > 가을 > 겨울 순으로 높게 나타났다. 이는 일사량 및 기온의 차이에 의한 것으로 사료된다. 녹화모듈의 증발산량은 강우 후 3~5일간 2~7mm/day에서부터 1mm/day 미만으로 급격히 감소하였으며, 이후 완만하게 감소하였다. 이는 녹화모듈에 식재된 기린초는 수분이 충분할 경우에는 수분을 급격히 소비하고, 수분이 부족할 때는 수분을 보존한다는 것을 시사한다. 여름철 알베도는 옥상면이 0.151, 옥상녹화면이 0.137 그리고 겨울철 알베도는 옥상면이 0.165, 옥상녹화면이 0.165로 나타나, 옥상면과 옥상녹화면의 알베도에는 큰 차이가 없었다. 여름철 녹화에 의한 표면온도의 저감효과는 일평균표면온도가 $1.6{\sim}13.8^{\circ}C$(평균 $9.7^{\circ}C$), 일최고표면온도가 $6.2{\sim}17.6^{\circ}C$(평균 $11.2^{\circ}C$)로 나타났다. 겨울철 녹화에 의한 온도 차이는 일평균 표면온도가 $-2.4{\sim}1.3^{\circ}C$(평균 $-0.4^{\circ}C$), 일최고표면온도가 $-4.2{\sim}2.6^{\circ}C$(평균 $0.0^{\circ}C$)로 크게 나타나지 않았다. 증발산량이 증가함에 따라 녹화에 의한 저감온도가 선형함수형으로 커지는 것으로 나타났으며, 증발산량에 따른 저감온도의 예측식은 [저감온도($^{\circ}C$)=$1.4361{\times}$증발산량(mm)+8.83, $R^2$=0.59]였다. 무강우 지속 시 녹화에 의한 표면온도 저감은 세덤 수관에 의한 차양효과에 의한 것으로 판단되었다. 본 연구 결과, 녹화모듈에 의한 저토심 옥상녹화는 저류와 증발산 작용에 의해 빗물 유출 및 도시열섬 관리에 긍정적인 효과를 준다는 것을 규명하였다. 또한 기린초는 무관수 저토심 옥상녹화용 수종으로 이상적 식물재료이며, 장기적인 도시열섬 완화라는 측면에서는 기린초의 증발산효과뿐 아니라 차양효과를 고려해야 한다는 것을 제시하였다.

This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.

키워드

참고문헌

  1. Akbari, H., S. L. Rose and H. Taha(2003) Analyzing the land cover of an urban environment using high-resolution orthophotos. Landscape and Urban Planning 63: 1-14. https://doi.org/10.1016/S0169-2046(02)00165-2
  2. Al-Busaidi, Yamamoto, T., S. Tanak and S. Moritani(2013) Evapotranspiration of succulent plant(Sedum aizoon var. floibundum), evapotranspiration - An overview chapter 12, INTECH
  3. Berghage, R., A. Jarrett, D. Beattie, K. Kelly, S. Husain, F. Rezai, B. Long, A. Negassi, R. Camerson and W. Hunt(2007) Quantifying Evaporational and Transpirational Water Losses in Green Roofs and Green Roof Media Capacity for Neutralizing Acid Rain. National Decentralized Water Resources Capacity Development Project (NDWRCP), Center for Green Roof Research at Pennsylvania State University, State College, Pennsylvania.
  4. Dimoudi, A. and M. Nikolopoulou(2003) Vegetation in the urban environment: Microclimatic analysis and benefits. Energy and Buildings 35(1): 69-76 https://doi.org/10.1016/S0378-7788(02)00081-6
  5. Fassman, E., E. Voyde, R. Simcock and J. Wells(2008) Quantifying Evapotranspiration Rates for New Zealand Green Roofs. Low Impact Development 2008.
  6. Getter, K. L., D. B. Rowe, Bert and M. Cregg(2009) Solar radiation intensity influences extensive green roof plant communities. Urban Forestry & Urban Greening 8: 269-281. https://doi.org/10.1016/j.ufug.2009.06.005
  7. Han, M. Y., J. K. Kim and S. C. Park(2003) The effect of greening roof on the quantity and quality of rainfall runoff. J. Architectural Inst. Kor. Planning & Design 19(11): 279-285. [in Korean]
  8. Kim, D. H., J. H. Choi, J. H. Im, K. S. Sim and S. W. Jang(2004) Development of module for the extensive green roof. J. Kor. Environ. Restoration Revegetation Technol. Autumn Conference [in Korean]
  9. Kim, H. S. and D. H. Jang(2001) An experimental study on the effect of rain water storage of the extensive roof planting system. J. Architectural Inst. Kor. Planning &Design 17(6): 161-168. [in Korean]
  10. Kondo Yasushi(2013) Mitigation of heat island by increasing solar reflectance of urban surface. J.T.C..C.M. Japan Testing Information for Construction Materials 1: 26-32 [in Japanese]
  11. Korea Meteorological Administration(2012.9-2013.8) Monthly Weather Report [in Korean]
  12. Martin, B. K.(2008) The Dynamic Stormwater Response of a Green Roof. Master of Landscape Architecture The University of Guelph, Canada.
  13. Mentens, J., D. Raes and M. Hermy(2003) Greenroofs as a part of urban water management. In: Brebbia, C. A. (Ed.), Water Resources Management II. WIT Press, Southampton, UK, pp. 35-44.
  14. Oberndorfer, E., J. Lundholm, B. Bass, R. R. Coffman, H. Doshi, N. Dunnett, S. Gaffin, M. Köhler, K. Karen, Y. Liu and B. Rowe(2007) Green roofs as urban ecosystems: Ecological structures, functions, and services. BioScience 57(10): 823-833. https://doi.org/10.1641/B571005
  15. Park, E. J., G. I. Kang and M. A. Kang(2010) GyuGreen roof strategy for mitigating the urban heat island effect. Gyeongggi Research Institute 2010-25. [in Korean]
  16. Santamouris, M.(2012). Cooling the cities -A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy
  17. Susca, T., S. R. Gaffin and G. R. Dell'Osso(2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution 159: 2119-2126. https://doi.org/10.1016/j.envpol.2011.03.007
  18. Takakura, T., S. Kitade and E. Goto(2000) Cooling effect of greenery cover over a building. Energy and Buildings 31: 1-6. https://doi.org/10.1016/S0378-7788(98)00063-2
  19. Takebayashi, H. and M. Moriyama(2007) Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and Environment 42: 2971-2979. https://doi.org/10.1016/j.buildenv.2006.06.017
  20. VanWoert, N. D., D. B. Rowe, J. A. Andresen, C. L. Rugh, R. T. Fernandez and L. Xiao(2005) Green roof stormwater retention: effects of roof surface, slope, and media depth. J. Environ. Qual. 34(3): 1036- 1044. https://doi.org/10.2134/jeq2004.0364
  21. Yamgichi, T., H. Yokoyama, K. Ishii and I. Misaka(2005) Effects of rooftop greening on mitigating Heatisland (Part 2). Annual Report of the Tokyo Metropolitan Research Institute for Environmental Protection: 239-241. [in Japanese]