Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea

Seong Phil Lee* · Chil Yong Kim**

ABSTRACT: The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore easy to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging. On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis branches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows.

1. According to available statistical data from Korean meteorological services (1954-1989) it is apparent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th.

2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%.

3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas.

4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2°C and the optimum heading date was August 10th. The optimum transplanting time for the early maturity variety was June 10th, medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date.

5. 38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea.

6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application.

7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of

*慶尙北道農村振興廳（Cyeongbug Provincial Rural Development Administration, Daegu 702-320, Korea)
**慶南作物試験場（Yeongnam Crop Experiment station, RDA, Milyang 440-310, Korea)
우리나라는 예기치 못한 기후변화의 발생 장도가 높아 1988년부터 1989년까지 1년에 걸쳐 무려 300회, 인수비 299회, 해설 발생이 10회로써 이와 같은 기후변화로 인한 피해가 있을 수 있었다. 이는 서해안과 동해안 등지에서 발생할 수 있는 Fohn의 감고로도 볼 수 있다. 특히, 이 지역의 기후 변화는 소규모의 지역에만 국한되지 않고 전반적인 기후 변화에 영향을 미친 것으로 보인다. 이는 기후 변화가 소규모의 지역에만 국한되지 않고 전반적인 기후 변화에 영향을 미친 것으로 보인다. 이는 기후 변화가 소규모의 지역에만 국한되지 않고 전반적인 기후 변화에 영향을 미친 것으로 보인다.

10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discoloration, so rice yield was increased because of increasing ripening ratio and 1,000 grain weight.
Table 1. Frequency of white head damage and cold injury in eastern coastal area of Korea (1979-1989).

<table>
<thead>
<tr>
<th>Year</th>
<th>Gale name</th>
<th>Dates passed</th>
<th>Wind velocity (m/sec)</th>
<th>Humidity (%)</th>
<th>Time of gale occurrence</th>
<th>Degree of damage</th>
<th>Influence</th>
<th>Damage area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>IRVING</td>
<td>Aug. 18</td>
<td>8.5</td>
<td>50</td>
<td>Night</td>
<td>High</td>
<td>0</td>
<td>16,102</td>
</tr>
<tr>
<td>1981</td>
<td>AGNES</td>
<td>Sept. 4</td>
<td>4.0</td>
<td>67</td>
<td>Day</td>
<td>Low</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1982</td>
<td>ELLIS</td>
<td>Aug. 28</td>
<td>4.0</td>
<td>56</td>
<td>Day</td>
<td>Low</td>
<td>0</td>
<td>322</td>
</tr>
<tr>
<td>1983</td>
<td>FORRES</td>
<td>Aug. 14</td>
<td>7.5</td>
<td>65</td>
<td>Day</td>
<td>Low</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1984</td>
<td>HOLLY</td>
<td>Aug. 22</td>
<td>6.5</td>
<td>60</td>
<td>Night</td>
<td>High</td>
<td>0</td>
<td>9,620</td>
</tr>
<tr>
<td>1986</td>
<td>VERA</td>
<td>Aug. 28</td>
<td>13.0</td>
<td>54</td>
<td>Night</td>
<td>Low</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1987</td>
<td>DINAH</td>
<td>Aug. 30</td>
<td>15.0</td>
<td>73</td>
<td>Day</td>
<td>Low</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

호크리해의 낮은 수온 때문에 형성되는 봄기의
고난화태이 해양에서 내陸으로 분어오는 寒冷多
湿한 冷潮風에 의해 出潮遲延。不穏。登熟不良
等의 損害을 頻繁하게 받고 있는 省分이다。

2. 東海岸潮風地域의 氣象形態의 特徴
가.內陸과 東海岸地域의 強風發生分布比較

東海岸地域에서 收量과 關聯하여 이에 報告된
氣象分析結果들에 의하면 거의 共通의으로 強風
에 의한 收量減少を 指摘하고 있다. 2,3,4,6,10

強風에 의한 損害은 強한 風速에 機械의 인
損害도 크나 強風時 他氣象要因과 複合의으로 作用
하여 稻體內 水分障害を 일으케 白穗。不穏。變
色粒。老化 等의 生理의 인損害도 매우 大의으
로 알려져 있다. 2,3,4,6,10

水分障害에 의한 損害 誘發 氣象條件으로는 風
速が 5～6m/sec 以上이고 氣溫 25.0℃ 以上、溫
度가 80% 以下인 것으로 報告되고 있는데 2,3,4,6,10
이와 關聯하여 1954년부터 1989년까지 36년間의 強風
發生分布を 그림 1과 같이 内陸과 東海岸地域
를 比較하면 東海 風速 5m/sec 以上の 強風發生
回數가 내陸地方의 4回에 比해 東海岸地域는 25
回나 發生하였으며 強風的 發生頻度가 높은 期間
是 出潮期 前後에서 乳熟期 사이인 8月 10日부터
9月 10日 사이였다. 따라서 이 地域에서 安全한
農事을 園謀하기에 風速 發生頻度가 높은 時期
を 回避할 수 있도록 出潮期를 달리하는 3～4品種
을 筆地別로 指配하거나 品種を 早生化시키고
移栽期를 調節하여 出潮期들 8月 10日 以前으로
당겨 有事時에 損害を 分散시키는 것이 第 1次의
対策이 필요하다.

나. 風害을 誘發시키는 品種의 種類

東海岸地域の 稻作期間中 風向別 温度の 变
化 및 發生頻度を 中央氣象臺 青海分室에서 調査
した資料を 引用하여 裁 2와 같이 分析する 前に
東海岸地域に 風害을 誘発させる 品種の 種類は
太白iramを 電取ませて 狼(Fohn)現象の 發生頻
度が 높아 水分障害を 일으케 白穗。不穏。変色
粒。老化 等의 生理的 損害を 誘発시키며 同時에
호크리해의 낮은 수온 때문에 形成되는 冷潮風
인 高潮風이 海洋에서 内陸으로 分어오는 寒冷
過溼한 冷潮風의 發生頻度가 높아 生育遅延。不
穏。登熟障害 等의 損害가 誘発되어 風薫度는 各
20, 25%나 된다。

또한, 이 地域에서는 風潮 通報時 氣象要件도
그림 3, 그림 4에서 보는바와 같이 250 以上으로 他
地域보다 顕著하게 높아 白穗障害 發生의 危険性

Table 2. Variations of wind velocity, temperature and humidity in different wind direction during rice crop season (1986-1989).

<table>
<thead>
<tr>
<th>Item</th>
<th>Wind direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>East wind</td>
</tr>
<tr>
<td>Temperature (℃)</td>
<td>19.8</td>
</tr>
<tr>
<td>Humidity (%)</td>
<td>86</td>
</tr>
<tr>
<td>Wind velocity (m/sec)</td>
<td>5.6</td>
</tr>
<tr>
<td>Frequency (%)</td>
<td>25</td>
</tr>
</tbody>
</table>

Fig. 1. Frequency of gale between inland and eastern coastal area of Korea (1954-1989).
이 가장 높은 지역으로 평가되고 있다.

물질의 수분 양은 간소한 속도로 빠지며 밤에 빠지는 2~3배, 밤에 밝아지는 10배로 변화하며 밤에 무기천사의 전부가 일어나, 이로 인한 수분의 수축량이 작은 반면에 호흡을 위하여 에디가 열려 있어 수분량이 크기 때문에

다. 또한 순환은 이 지역의 기후환경의 변화가 다소한 이유로 요한산맥이 해안을 겹쳐서 남북으로 분리되어 펠(Föhn) 현상에 의한, 그동안 난간의 영향으로, 수분 사용량이 일어나, 흰색 혹은 반기와의 변화를 일으키는 환경에 높여 있다고 해석하였다.

다. 내륙의 해안지역의 기후환경의 차원

우리나라 동해안지역의 동쪽에 요한산맥이 해안과 겹쳐서 남북으로 분리되어 중간의 해안의 영향을 동시에 받는 곳으로 내륙과 비교하여 여름에는 고온이 낮고 겨울에는 낮은 온도이다. 작물기간인 4월에서 10월의 기후는

Fig. 2. Diurnal change of temperature and humidity in different wind direction.

Fig. 3. Relationships between evaporation and dangerous districts causing the white head damage by Föhn in 1986.

Fig. 4. Ratio on the distribution patterns of rice white head damage occurred by passing the typhoon VERA in 1986.

Table 3. Variations of evapotranspiration rate by the gale in rice plant.

<table>
<thead>
<tr>
<th>Organs</th>
<th>Windless day</th>
<th>Gale day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evapotranspiration rate (r/sec/m²)</td>
<td>Index (%)</td>
</tr>
<tr>
<td>Spike</td>
<td>0.094</td>
<td>184</td>
</tr>
<tr>
<td>Leaf</td>
<td>0.079</td>
<td>155</td>
</tr>
<tr>
<td>Culm</td>
<td>0.051</td>
<td>100</td>
</tr>
</tbody>
</table>

- 410 -
Table 4. Difference of climatic characteristic between inland and eastern coastal area(1983-1989).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. temp. (℃)</td>
<td>C</td>
<td>12.3</td>
<td>17.1</td>
<td>20.9</td>
<td>24.5</td>
<td>25.6</td>
<td>20.5</td>
<td>20.5</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-0.5</td>
<td>-0.4</td>
<td>-1.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.1</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Maxi. temp. (℃)</td>
<td>C</td>
<td>18.8</td>
<td>33.6</td>
<td>26.5</td>
<td>29.0</td>
<td>30.4</td>
<td>25.8</td>
<td>21.1</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-1.8</td>
<td>-0.9</td>
<td>-2.6</td>
<td>-1.3</td>
<td>-1.4</td>
<td>-1.2</td>
<td>0</td>
<td>-1.5</td>
</tr>
<tr>
<td>Mini. temp. (℃)</td>
<td>C</td>
<td>5.6</td>
<td>10.3</td>
<td>15.6</td>
<td>20.6</td>
<td>21.4</td>
<td>15.7</td>
<td>8.4</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>0.9</td>
<td>1.1</td>
<td>-0.4</td>
<td>-0.9</td>
<td>-0.4</td>
<td>1.0</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Sunshine hour (hr)</td>
<td>C</td>
<td>265</td>
<td>310</td>
<td>279</td>
<td>253</td>
<td>268</td>
<td>230</td>
<td>243</td>
<td>1,848</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-41</td>
<td>-57</td>
<td>-91</td>
<td>-72</td>
<td>-68</td>
<td>-64</td>
<td>-41</td>
<td>-434</td>
</tr>
<tr>
<td>Rainfall (mm)</td>
<td>C</td>
<td>80</td>
<td>75</td>
<td>136</td>
<td>199</td>
<td>199</td>
<td>145</td>
<td>60</td>
<td>894</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-12</td>
<td>-11</td>
<td>-65</td>
<td>-16</td>
<td>9</td>
<td>13</td>
<td>-76</td>
<td>-76</td>
</tr>
</tbody>
</table>

1) Chilgog (Inland)
2) Yeongdug (East coast)

내陸과 해안의 기후 차이에 대해 보다

表 4와 같다:

내陸에 비해 평균気温은 0.3℃, 最高気温은 1.
5℃ 높았고, 最低気温은 0.5℃ 높았으나 여름철
생育最盛気候의 6-8월에는 寒冷多雨한 潮風의 影響으로, 最低気温이 낮았으며 降雨量
도 818㎜ 정도로 상대적으로 적은 狀態이면서 日
照時間이 434시간이나 적은 水現象을 나타냈다.
또한 無面気温도 表 5에서 보는 바와 같이 臧陸에
비해 最高気温 0.8℃, 最低気温 3.7℃, 平均気温
이 1.5℃ 정도가 높았다. 이와같은 水現象은
気温이 臧陸에 비하여 높고 地形으로 太白山脈
이 臧陸에 隣接하여 水現의 影響이 높아
서 호르는 潮風이 水現을 上昇시킬 수 있는 時間이
많기 때문에 最低気温이 臧陸에 비하여 큰
差異이 없는데도 불구하고 最低気温이 떨어지고
음성夜間에 乾燥한 偏北風의 影響을 받아 氣
化熱로서 水現의 損失이 큰 것으로 생겼다.
또한 臧陸이 臧陸에 비해 1.1℃나 높은 原因은 標
高가 海洋 1-2m程度로 높고 주로 砂丘海岸으로
이러저 있기 때문에 地下水位가 높음을 알리며
라 深海의 寒流와 連結되어 臧陸의 水現의 影響
을 받은 可能性이 높다.14) 이와같은 無面気温
이 높은 東海岸地帶에서는 移稲苗의 養分의 吸
収機能을 낮게 하는 농作의 活力가 水現과 地温에
支配되고, 特히 營養生長期에는 生长期이
보다 짧아

Table 5. Difference of water and soil temperature between inland and eastern coastal area(1983-1989).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. temp. (℃)</td>
<td>C</td>
<td>19.4</td>
<td>20.8</td>
<td>25.5</td>
<td>23.8</td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-2.0</td>
<td>-1.4</td>
<td>-1.8</td>
<td>-0.6</td>
<td>-1.5</td>
</tr>
<tr>
<td>Maxi. temp. (℃)</td>
<td>C</td>
<td>27.6</td>
<td>27.7</td>
<td>31.1</td>
<td>28.3</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-0.3</td>
<td>-0.5</td>
<td>-1.9</td>
<td>-0.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>Mini. temp. (℃)</td>
<td>C</td>
<td>10.5</td>
<td>14.3</td>
<td>20.4</td>
<td>21.3</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-4.3</td>
<td>-5.3</td>
<td>-3.5</td>
<td>-1.7</td>
<td>-3.7</td>
</tr>
<tr>
<td>Soil temp. (℃)</td>
<td>C</td>
<td>18.3</td>
<td>21.2</td>
<td>23.7</td>
<td>22.6</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>-1.2</td>
<td>-1.7</td>
<td>-0.7</td>
<td>-1.2</td>
<td>-1.1</td>
</tr>
</tbody>
</table>

1) Chilgog (Inland)
2) Yeongdug (East coast)
고습은 전반적으로 계절이 길고 적절한 수분공급을 보장하는 환경에서 가장 적합하며, 이는 사철 동안 수분공급을 보장하는 환경에서 가장 적합하다. 그러나 이에 따르면, 다시금 농업의 중요한 부분이 될 수 있다.

Table 6. Agronomic traits and grain yield in both and east coastal areas.

<table>
<thead>
<tr>
<th>Area classification</th>
<th>Region</th>
<th>Heading date</th>
<th>Culum length (Cm)</th>
<th>No. of panicles per hill</th>
<th>Spikelets per panicile</th>
<th>Ripened grain rate (%)</th>
<th>1,000 grain weight (g)</th>
<th>Milled Rice yield (kg/10a)</th>
<th>Index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myeongji</td>
<td>8.12</td>
<td>61</td>
<td>13.9</td>
<td>92</td>
<td>70</td>
<td>21.4</td>
<td>422</td>
<td>85</td>
</tr>
<tr>
<td>Central</td>
<td>Chunchon</td>
<td>8.2</td>
<td>71</td>
<td>13.7</td>
<td>107</td>
<td>79</td>
<td>21.6</td>
<td>497</td>
<td>100</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>+10 -10</td>
<td>+0.2</td>
<td></td>
<td>-15 -9</td>
<td>-0.2</td>
<td>-75 -15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern</td>
<td>Chilgog</td>
<td>8.7</td>
<td>74</td>
<td>14.0</td>
<td>129</td>
<td>86</td>
<td>21.4</td>
<td>586</td>
<td>100</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td>+7 -3</td>
<td>+2.0</td>
<td></td>
<td>-16 -7</td>
<td>-0.4</td>
<td>-49 -8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21 Coastal 22 Inland

Fig. 5. Effective radiation index and respiratory index during important rice growing stages.

呼吸에 의하여 발생되는 일정한 일명이 대기 중에서의 대기 중의

1. 冷風에 의한 生育遲延型 冷害

東海岸地域は、台風の影響を受けて、海岸部に影響を及ぼす。特に、冷風害が発生する可能性がある地域では、育成条件が著しく影響を受けている。

水稻作の冷風害様相

1. 冷風害에 의한 生育遲延型 冷害

東海岸地域は、台風の影響を受けて、海岸部に影響を及ぼす。特に、冷風害が発生する可能性がある地域では、育成条件が著しく影響を受けている。
2. 고온乾燥天候에 依한 水分障害型風害
가. 白穗發生 氣象條件

颱風에 依한 白穗發生條件은 最初, 비를 同伴하지 않는 乾燥雨(Foehn 現象)이 있어야 하며, 晚에, 白穗發生 前日 또는 前前日 降水現象이 있으
며, 前일, 白穗發生 前日 또는 前前日 降水現象이 있으
며, 끝에, 白穗發生 前日 또는 前前日 降水現象이 있으

우리나라에서 出穂期에 風害가 頻發에 나타난 現象은 Morita 을가 처음으로 報告하였으며, 坪井是 4.43은 增 出穂期세의
의 棗害發生限界風速을 3~4m/sec로 본다면 限
界風速 以上에서는 風速이 콜수록, 時間이 길수
록 棗害가 증가되며 溫氣이 없는 強風이 뿜어 脫
水로 因하여 植物의 部分乾燥가 일어나고 特히
夜間에 乾燥된 비가 몰고 되면 棗體의 機理이
나아 뢄의 水分吸收量이 적은 反面에 呼吸を
 위하여 氣孔과 水孔이 열려어 蒸散量이 크기
에록으로 白穂를 發生시킨다고 하였다.

崔,4,66 村松은 人為的 Föhn 處理過程에서 白
穂와 함께 發生한 變色粒에 對하여 乾燥雨이 原
因이 되고, 있음을 孝示하고 있다. 이러한 形態
의 風害는 我々나라보다 風害의 發生頻度가 높은
日本에서 더욱 흔하며 이에 關한 研究結論이 報
告된 바 있다.4,24,37,43

이와같이 비 栽培時 乾燥한 비의 棗害는 風
速, 溫度, 湿度 뿐만 아니라 晚夜間의 差異 및
生育時間에 따라 棗害形態가 달라지고 있다. 그
림 6은 白穂가 落하하게 發生하였던 1986年 8月 28
日~29日의 風雨, "Vera"號 폭와 變色粒의 發生
하였던 1987年 8月 31일의 風雨, "Dinah"號 報의
時間별 風速과 温濕度를 나타내었다. 兩個年 共
히 風雨 風勢은 中晚生穗 및 2毛作収 뷔의 出
穂 무렵인 8月 末頃으로서 水分障害型風害가 發生
하기 쉬운 時期었다.

年60% 以下 농 빠르게 하여 乾燥의 時間帶
로 보면 86年 "Vera"號 報는 24時間이고 1987
年 "Dinah"號 報는 12時間으로 當時의 温度는
年2個年이 비슷하였으나 水分障害型風害는 風間보
다 晚夜間に 高温乾燥風を 含まれて 發生하
능으로 考察되었으며, 이는 植物의 Foehn風是 棗體內의 水分 Potential値가 높은 晚
夜間に 잘 發生한다는것과 一致하는 傾向이다.

나. 出穂期與 白穂損傷의 關係

出穂期에의 風雨直後의 乾燥風雨에 依한 白穂損
傷과의 關係를 보면 白穂는 出穂한 2毛作収
平常時보다 3倍나 急速한 過多蒸散으로 因한 湿
度下降作用에 依해 생기며 대체로 出穂 3~4日必
乎 出穂後 15日頃까지 損害를 입었지만 그림 7
에서 보는 바와 같이 出穂期에서 損穂期 사이인
出穂期에 白穂損傷가 가장 높았고 出穂後6日必
乎는 白穂보다 變色粒數가 增加하였다. 安武等
인은 鼻料水準을 달리한 出穂期의 差異를 利用す
り 白穂損傷率과의 關係를 測定한 結果 損穂期가
 가장 損害가 크다고 하였으며 金等은 風雨에
依한 變色粒과 白穂現象은 出穂後4~6일頃이 가
장 많이 나타났다고 報告한 것과 一致하는 傾
向이었다. 出穂期에 따른 白穂損傷과 減収率과의

Fig. 6. Differences occurring wind damage according to the passing time of typhoon.
Fig. 7. The relationship between the duration from heading date to typhoon and the ratio of white head.

Table 7. The ratio of yield decrease and wind damage according to heading date in 1979.

<table>
<thead>
<tr>
<th>Time of typhoon</th>
<th>Ratio of white head (%)</th>
<th>Ratio of discoloration head (%)</th>
<th>Ratio of yield-decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 days after head</td>
<td>20</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>3 days after head</td>
<td>40</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>Heading date</td>
<td>35</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>3 days before heading</td>
<td>10</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6 days before heading</td>
<td><5</td>
<td>-</td>
<td><5</td>
</tr>
</tbody>
</table>

Table 8. Occurrence of white head according to Nitrogen fertilizer application in 1979.

<table>
<thead>
<tr>
<th>Nitrogen amounts (kg/10a)</th>
<th>Occurrence of white head (0-9)</th>
<th>Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>5.6</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>24.0</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>31.1</td>
</tr>
</tbody>
</table>

出穂期과 접대한 관계가 있으나 한편, 씨앗의 품질과 품종에 따라 달라지고 있다.

安武等은 그에요시에서 품종의 차이가 있음을 보고하였으며, 象田等은 품종들
이 상의 차이에서 오해의 염려가 다가진다고 하였고, 上原等도 태풍을 이용한 실내 실험을 실시하여 품종들에의 차이를 보고한 바 있다. 崔德明等은
太陽光의 生産性에 의한 試験로서 供試된 품종 및
系統中 乾燥前 数日間에 生穂한 것들에 대하
여 품종의 품질 차이를 제한한 결과는 그림 8과 같다.
同一稈에에 生穂한 것이라도 東海지역 황해지
은 거의 품종 품질을 받지 않는 반면 乾燥後

Fig. 8. Varietal differences of 6thm damage as affected by typhoon "Dinah" occurred on August, 28 to 30, '87 in Yeongdug by Kim et al.)
Fig. 9. The relationship between the ratio of ripened grain and the ratio of wind damage.

Fig. 10. The relationship between the ratio of 1000 grain weight and the ratio of wind damage.

Fig. 11. The relationship between the ratio of white head and yield.

Fig. 12. Degradation of rice grain quality by the damage of white head.
Fig. 13. The relationship between the duration from heading date to typhoon and the degree of wind damage.

Fig. 15. Correlation between injury degree of grain discoloration and 1000 grain weight of winnowed paddy.

Table 9. Relationship between degree of discolored grains and yield loss in heading stage.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ratio of discolored grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discarded above 1/3</td>
<td>20 40 60 80 90</td>
</tr>
<tr>
<td>Discarded above 1/2</td>
<td>10 20 45 65 80</td>
</tr>
<tr>
<td>Yield loss (%)</td>
<td>5 10 20 30 40</td>
</tr>
</tbody>
</table>

Fig. 14. Correlation between injury degree of grain discoloration and percentage of ripeness.

4. 風風과 임의의損

이번 집행에 의한 화수 및 風風에 의한 破裂로 마치 총체로양으로 갈기잡기 못하저서 임의의機能
품종의 무작성과 증기 침몰배양과의 관계는 주의하여 성장단계와 관련하여 더욱 토해져야 하겠다.

일의 중력으로 증기 침몰배양은 반대로 일의 증식성이 큰 범역계의 배양은 배양이 적었으나 저산간이나 배양이 비하여 배양이 무정고 배양이 고피고 일의 증식성이 큰 배양계의 배양은 배양이 고피하였다. 배양의 위치는 시기류는 표 10과 같이 유사한 결과를 보는데 표 2)의 시기류의 시기류가 가장 크고 다음의 표 3)의 4)의 5)의 순이다. 생육시기별로는 시기류 20일과 40일의 범위 다 배양이 고피하지만 배양으로서 배양은 표 11

Table 11. Change of yield index as affected by
knifing damage of rice leaf and stem by
strong wind (8.5 m/sec), 1983.

<table>
<thead>
<tr>
<th>Damage types</th>
<th>Damage* time</th>
<th>Percentage of damage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem#1</td>
<td>20</td>
<td>100 (189)</td>
</tr>
<tr>
<td>Leaf#2</td>
<td>20</td>
<td>100 (539)</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>100 (560)</td>
</tr>
</tbody>
</table>

#1 Jinjubyeo #2 Taebaegbyeo
* : Days after transplanting
() : Rough rice (kg/10a)

과 같이 늘게 배양을 잃은 시기류 40일 범위에서 배양이 많다.

5. 風雨에 의한 枝梗 및 穀花의 退化

出穂前 時期別 風害에 의한 枝梗이나穀花의 退化를 연구하기 위하여 조사한 연구는 우리나라에서는 이루 어진 바가 없으며, 此에서 圍際 상태에서 여러 품종을 관찰적으로 조사한 바에 의하여 出穂前 23.5일에 風害이 일어나 태어나나 그다지 넓게 배양이 적은 것에서 穀花의 退化가 많다고 하였다. 치약 송·바일의 서식인

Table 10. Percentage of leaf knifing damage in association with leaf position by strong wind (8.5 m/sec), 1983.

<table>
<thead>
<tr>
<th>Damage time*</th>
<th>First leaf**</th>
<th>Second leaf</th>
<th>3rd leaf</th>
<th>4th leaf</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.9</td>
<td>25.1</td>
<td>4.9</td>
<td>2.2</td>
<td>8.8</td>
</tr>
<tr>
<td>40</td>
<td>1.2</td>
<td>9.4</td>
<td>2.9</td>
<td>1.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Mean</td>
<td>2.1</td>
<td>17.3</td>
<td>3.9</td>
<td>1.9</td>
<td>5.9</td>
</tr>
</tbody>
</table>

* : Days after transplanting
** : Leaf no. from top

Table 12. Decrease of primary, secondary rachilla and number of glume by wind treatment.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Primary rachilla</th>
<th>Secondary</th>
<th>No. of glume per spike</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-treatment</td>
<td>No. of rachilla</td>
<td>No. of glume</td>
<td>No. of glume per spike</td>
</tr>
<tr>
<td>Wind-treatment</td>
<td>9</td>
<td>49.7</td>
<td>11.3</td>
</tr>
<tr>
<td>treatment</td>
<td>-3*</td>
<td>45.5</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>-13</td>
<td>43.8</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td>-23</td>
<td>44.9</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>-33</td>
<td>47.4</td>
<td>8.7</td>
</tr>
</tbody>
</table>

Wind velocity : 12m/sec
* : Days before heading

- 417 -
冷風害 輕減策對

1. 氣候影響과 가습기의 地域間 差異

東海道地域에서 154년부터 1989년까지 36년間に
에 걸쳐 強風來襲時期는 8월 10일부터 9월 10일
 사이에 가장 漏率이 높으므로 이 危險時期를 回
避할 수 있도록 出穂期를 달리하는 3~4 品種を
筆地別로 採取하거나 移穀期を 달리하여 有事時
에 損害을 分散도록 하는 것이 1次의인 對策이
됨이다. 1989년부터 1998년까지 3個年間 東海
道地域에 蔵珍과 地域인 大邱에서 實施된 試験成
績을 종합하여 보면 향 13에서는 蔬類의 生育은
地域에 따라 出穂期가 5~12日 늦고 穏数은 많
으나 穏當穂花数가 적고 穏穂率과 千粒重이 떨
어져 收量이 減少し되고 있다.

東海岸地域의 水中 清收에 가장 크게 影響을 미
치는 收量慣成要素のは 穏穂率과 千粒重으로 地域에
에 따라 穏穂率이 6~10%，千粒重이 1.2~1.5
g程度으로 떨어지고 있다. 이와같은現象은 前述한
바와 같이 수량生産期間에 強風의 頻発性結果로
이나 水分, 地温, 地面に 落ち아가 機械의 障
礙와 生理的障礙을 複合의으로 받아 留의 生産延
誤과 아울러 穏穂分의 收穂を 促進하고 政光合成能
力이 떨어지기 때문인것으로 생각된다.

나. 蔬穂期 移植에 따른 收穂の 地域間
比較

蔬穂期 移植에 따른 收穂を 地域間에 比較하
여 보면 향 14에서와 같이 蔬穂에서는 移穀이 帰
돌수록 收穂이 增加하였으나 大邱에서는 移穀이
돌수록 增穂가 地域間の 傾向이 서로 反
対되었으나 1989년에서 1998년에 水分이 過度하
게 높지 않고, 9月에 水分이 急激히 높이는 蔬穂
에서는 穏穂한 地面에 出穂하게 되어 穏穂
도 8月에 水分이 높았고 9月에도 地面에 水分이
比較的 地面가 높게 培養되어 大邱에서는 오하리 8月 20일에
出穂하는 것이 常鮮에 有利하며 增穂되는것으
로 생각된다.

品種別 移穀期에 따른 地域間 收穂를 比較해
보면 蔬穂, 五台郡 등은 大邱보다 蔬穂에서 增
穂가 높았고 反対로 八公郡, 東海郡, 洛東郡 등은
蔬穂에서보다 大邱에서 增穂가 높였다. 그러나 花成
郡, 蔬穂郡 等은 二者地域間에 收穂이 비슷하였으
며, 特히 大邱郡是 地域間에서 收穂量이 높
았다. 따라서 生産期間中 平均穂温이 낮아서 出
穂期延誤이 흔한 蔬穂에서는 早穂하거나 生産期間
이 짧은 早穂を 採取하여 出穂期를 앞당기야
할것으로 생각된다.

한편, 平均穂温이 높은 大邱에서 蔬穂期과 五
台郡은 穏穂生長期間이 短縮되어 7月下旬頃에 出
穂하여 收穂減少が 15%으로 生産期間が 品種
の 選択과 移穀期を 6月 15日 뒤가 6月 8月 20日이
高穂에 出穂된 品種의が 減少し 5月 30日 移穀보다
6月 15日 移穀에서 增穂して 收穂이 常鮮에
서 정확하다고 報告하였다.

다. 気象環境 差異에 따른 地域別 收穂作
期 設定

1) 最適出穂期의 地域間 差異

蔬穂과 大邱에서 3年間 3回 移穀期에 試験한
8個品種의 出穂後 40日間의 平均穂温과 收穂과の
関係は 2次回帰方程式によって 成立되었다(그림16).
すなわち, 收穂(Y)는 Y = -2492.2 + 265.62x - 5.981x²
(X²平均穂温)으로 標示され었고, 出穂後 40日間の
平均穂温が 22.2℃일때 최高穂数を 나타내었다.
이는 蔬穂の 出穂期 平均穂温が 20℃以下에서
は完全成熟を 形成하고 出穂穂数は 21~25℃133로
고 한 報告와 비슷한 傾向이였으며 出穂後 40日間
の 平均穂温이 22.2℃(積算温度 888℃)에 該当
되는 날짜는 蔬穂은 8月 10일, 大邱는 8月 21일
이었다.

村上 等31,32,33이 提示한 氣象生産力式を利用
하여 出穂期 移穀期에 따른 氣象生産力의 収穂を
 보면 그림 17과 같다. 蔬穂에서는 8月 10日頃에
出穂하고 穏穂数가 m³ 荷 35,000個일때, 村上
では 8月 25日頃에 出穂하고 m³ 33,000個의
穂数を 가질때에 最大気象生産力を 나타내었
다.

2) 最適移穀期와 出穂後期期的 地域間 差異

気象生産力과 穏穂最適穂温을 考慮하여 設定한
各 地域別 最適出穂期에 出穂를 誘導하기 위하여
蔬穂期間이나 年次間의 移穀後 出穂期까지의
GDD(有効積算穂温)을 利用하여 品種別로 最適
移穀期を 推定し得るが 같았다.
<table>
<thead>
<tr>
<th>Transplanting date</th>
<th>Variety</th>
<th>Heading dates</th>
<th>No. of panicles per hill</th>
<th>No. of spikelets per panicle</th>
<th>No. of spikelets (x1000/m²)</th>
<th>Ripened grains (%)</th>
<th>1000-grain weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Uljin</td>
<td>Daegu</td>
<td>Uljin</td>
<td>Daegu</td>
<td>Uljin</td>
<td>Daegu</td>
</tr>
<tr>
<td>May 25</td>
<td>Unhongbyeo</td>
<td>Jul.29</td>
<td>Jul.22</td>
<td>15.1</td>
<td>11.5</td>
<td>89</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>Aug.1</td>
<td>Jul.25</td>
<td>16.4</td>
<td>11.5</td>
<td>72</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>Aug.12</td>
<td>Aug.2</td>
<td>16.1</td>
<td>12.9</td>
<td>72</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>Aug.15</td>
<td>Aug.3</td>
<td>17.4</td>
<td>14.0</td>
<td>70</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>Aug.14</td>
<td>Aug.4</td>
<td>18.6</td>
<td>14.7</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>Aug.15</td>
<td>Aug.6</td>
<td>17.4</td>
<td>14.3</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>Aug.19</td>
<td>Aug.8</td>
<td>18.1</td>
<td>14.7</td>
<td>69</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>Aug.20</td>
<td>Aug.10</td>
<td>17.8</td>
<td>13.8</td>
<td>68</td>
<td>87</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>Aug.12</td>
<td>Aug.1</td>
<td>17.3</td>
<td>13.4</td>
<td>72</td>
<td>82</td>
</tr>
<tr>
<td>Jun.5</td>
<td>Unhongbyeo</td>
<td>Aug.4</td>
<td>Aug.30</td>
<td>15.9</td>
<td>11.6</td>
<td>70</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>Aug.7</td>
<td>Aug.1</td>
<td>15.3</td>
<td>11.9</td>
<td>79</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>Aug.19</td>
<td>Aug.9</td>
<td>16.9</td>
<td>12.2</td>
<td>74</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>Aug.21</td>
<td>Aug.10</td>
<td>16.5</td>
<td>12.3</td>
<td>73</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>Aug.20</td>
<td>Aug.9</td>
<td>18.4</td>
<td>14.3</td>
<td>73</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>Aug.23</td>
<td>Aug.15</td>
<td>17.7</td>
<td>12.9</td>
<td>73</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>Aug.26</td>
<td>Aug.16</td>
<td>17.7</td>
<td>12.9</td>
<td>73</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>Aug.25</td>
<td>Aug.17</td>
<td>18.8</td>
<td>12.7</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>Aug.18</td>
<td>Aug.10</td>
<td>17.2</td>
<td>12.7</td>
<td>72</td>
<td>85</td>
</tr>
<tr>
<td>Jun.15</td>
<td>Unhongbyeo</td>
<td>Aug.11</td>
<td>Aug.6</td>
<td>15.3</td>
<td>12.7</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>Aug.13</td>
<td>Aug.9</td>
<td>15.0</td>
<td>12.5</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>Aug.24</td>
<td>Aug.16</td>
<td>16.4</td>
<td>12.8</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>Aug.27</td>
<td>Aug.18</td>
<td>16.8</td>
<td>12.3</td>
<td>69</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>Aug.23</td>
<td>Aug.15</td>
<td>17.3</td>
<td>14.1</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>Aug.27</td>
<td>Aug.19</td>
<td>16.5</td>
<td>12.5</td>
<td>73</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>Aug.31</td>
<td>Aug.21</td>
<td>17.5</td>
<td>12.6</td>
<td>67</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>Aug.30</td>
<td>Aug.22</td>
<td>18.0</td>
<td>13.2</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>Aug.23</td>
<td>Aug.16</td>
<td>16.6</td>
<td>12.9</td>
<td>72</td>
<td>83</td>
</tr>
</tbody>
</table>
Table 14. Polished rice yield of eight varieties at three transplanting Dates for three years in Uljin and Daegu.

<table>
<thead>
<tr>
<th>Transplanting Date</th>
<th>Variety</th>
<th>Uljin '87</th>
<th>Uljin '88</th>
<th>Uljin '89</th>
<th>Uljin Mean</th>
<th>Daegu '87</th>
<th>Daegu '88</th>
<th>Daegu '89</th>
<th>Daegu Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>May.25</td>
<td>Unbongbyeo</td>
<td>503</td>
<td>384</td>
<td>459</td>
<td>449</td>
<td>344</td>
<td>354</td>
<td>344</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>488</td>
<td>386</td>
<td>455</td>
<td>443</td>
<td>404</td>
<td>365</td>
<td>423</td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>520</td>
<td>408</td>
<td>429</td>
<td>452</td>
<td>420</td>
<td>412</td>
<td>448</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>502</td>
<td>381</td>
<td>414</td>
<td>432</td>
<td>416</td>
<td>476</td>
<td>486</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>561</td>
<td>432</td>
<td>503</td>
<td>499</td>
<td>403</td>
<td>429</td>
<td>503</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>494</td>
<td>407</td>
<td>407</td>
<td>436</td>
<td>407</td>
<td>461</td>
<td>513</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>445</td>
<td>417</td>
<td>409</td>
<td>424</td>
<td>408</td>
<td>439</td>
<td>519</td>
<td>455</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>470</td>
<td>452</td>
<td>412</td>
<td>445</td>
<td>377</td>
<td>430</td>
<td>471</td>
<td>426</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>496</td>
<td>408</td>
<td>436</td>
<td>447</td>
<td>397</td>
<td>421</td>
<td>465</td>
<td>427</td>
</tr>
<tr>
<td>Jun.5</td>
<td>Unbongbyeo</td>
<td>509</td>
<td>393</td>
<td>420</td>
<td>441</td>
<td>313</td>
<td>352</td>
<td>412</td>
<td>359</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>445</td>
<td>435</td>
<td>398</td>
<td>426</td>
<td>375</td>
<td>375</td>
<td>460</td>
<td>403</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>548</td>
<td>422</td>
<td>386</td>
<td>452</td>
<td>412</td>
<td>457</td>
<td>485</td>
<td>451</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>442</td>
<td>399</td>
<td>380</td>
<td>407</td>
<td>411</td>
<td>494</td>
<td>528</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>529</td>
<td>455</td>
<td>459</td>
<td>481</td>
<td>435</td>
<td>500</td>
<td>520</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>477</td>
<td>408</td>
<td>386</td>
<td>424</td>
<td>423</td>
<td>460</td>
<td>500</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>445</td>
<td>403</td>
<td>375</td>
<td>408</td>
<td>430</td>
<td>461</td>
<td>501</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>434</td>
<td>440</td>
<td>399</td>
<td>425</td>
<td>394</td>
<td>458</td>
<td>491</td>
<td>448</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>479</td>
<td>419</td>
<td>400</td>
<td>433</td>
<td>399</td>
<td>445</td>
<td>487</td>
<td>444</td>
</tr>
<tr>
<td>Jun.15</td>
<td>Unbongbyeo</td>
<td>541</td>
<td>412</td>
<td>404</td>
<td>452</td>
<td>351</td>
<td>354</td>
<td>436</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>Odaebyeo</td>
<td>473</td>
<td>426</td>
<td>374</td>
<td>424</td>
<td>386</td>
<td>412</td>
<td>471</td>
<td>423</td>
</tr>
<tr>
<td></td>
<td>Hwaseongbyeo</td>
<td>500</td>
<td>376</td>
<td>396</td>
<td>424</td>
<td>414</td>
<td>430</td>
<td>482</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>Palgongbyeo</td>
<td>368</td>
<td>363</td>
<td>353</td>
<td>361</td>
<td>366</td>
<td>451</td>
<td>483</td>
<td>467</td>
</tr>
<tr>
<td></td>
<td>Daechangbyeo</td>
<td>505</td>
<td>440</td>
<td>433</td>
<td>459</td>
<td>437</td>
<td>509</td>
<td>500</td>
<td>482</td>
</tr>
<tr>
<td></td>
<td>Donghaebyeo</td>
<td>430</td>
<td>387</td>
<td>377</td>
<td>398</td>
<td>475</td>
<td>469</td>
<td>487</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>Nagdongbyeo</td>
<td>392</td>
<td>401</td>
<td>380</td>
<td>391</td>
<td>462</td>
<td>477</td>
<td>486</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Yeongdugbyeo</td>
<td>366</td>
<td>424</td>
<td>358</td>
<td>383</td>
<td>435</td>
<td>485</td>
<td>510</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>447</td>
<td>404</td>
<td>384</td>
<td>412</td>
<td>428</td>
<td>448</td>
<td>481</td>
<td>452</td>
</tr>
</tbody>
</table>

Table 15. The optimum transplanting date of eight rice varieties estimated by growing degree days (GDD) in Uljin and Daegu.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Uljin A</th>
<th>Uljin B</th>
<th>Daegu A</th>
<th>Daegu B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unbongbyeo</td>
<td>Jun.15</td>
<td>Jun.15</td>
<td>Jul.3</td>
<td>Jul.7</td>
</tr>
<tr>
<td>Odaebyeo</td>
<td>Jun.9</td>
<td>Jun.9</td>
<td>Jun.30</td>
<td>Jul.5</td>
</tr>
<tr>
<td>Hwaseongbyeo</td>
<td>May.21</td>
<td>May.21</td>
<td>Jun.21</td>
<td>Jun.26</td>
</tr>
<tr>
<td>Palgongbyeo</td>
<td>May.17</td>
<td>May.17</td>
<td>Jun.19</td>
<td>Jun.24</td>
</tr>
<tr>
<td>Daechangbyeo</td>
<td>May.22</td>
<td>May.22</td>
<td>Jun.20</td>
<td>Jun.25</td>
</tr>
<tr>
<td>Donghaebyeo</td>
<td>May.18</td>
<td>May.18</td>
<td>Jun.14</td>
<td>Jun.20</td>
</tr>
<tr>
<td>Nagdongbyeo</td>
<td>May.12</td>
<td>May.12</td>
<td>Jun.13</td>
<td>Jun.18</td>
</tr>
<tr>
<td>Yeongdugbyeo</td>
<td>May.13</td>
<td>May.13</td>
<td>Jun.11</td>
<td>Jun.16</td>
</tr>
</tbody>
</table>

A: Optimum transplanting date estimated by mean air temperature
B: Optimum transplanting date estimated by the meteorological value for good ripening

Fig. 16. Relationships between mean air temperature for 40 days after heading and rice yield.
Fig. 17. Meteorological values for rice yield during ripening period in Uljin and Daegu.

Note. X : No. of spikelets (x10,000/m³)
 t : Mean air temp. for 40 days from 10 days before heading to 30 days after heading.
 s : Sunshined hours per day for 40 days from 10 days before heading to 30 days after heading.

Fig. 18. The critical latest heading date estimated by substracting GDD (500°C) from the date with the critical lowest temperature for ripening of 15°C in Uljin and Daegu.
또한 本省에 서면, 畜面水溫이 21℃ 이하되는 冷害
常習地에서는 畜面水温의 活動이 被弱
하여 土壌環境作用이 發達하지 못하여 作物의 吸收
利用を可能とする 畜面水溶性物質이 적다고 하였으
며 따라서 畜酸을 余量基肥 또는 増施을 하더라도
冷水로 因한 低溫障害로 植物體의 畜酸吸収가
抑制되어 生育初期 分離力의 弱化を. 因하여 有効
蓄比率の 低下に 株當數의 減少에 対して 收量의
減收原因이 된다고 하였으며 이와같은 結果を 促
完하기 위해서는 畜酸を 移播後 32日を 温育に
て 30%의 增收効果가 있다고 하였다.

1981年과 1982年에 實施된 試験結果가 表 17에
서 보는 바와 같이 冷潮風により 畜面水温이 낮아
移播畠의 生長が 둔어 有效分離期間이 짧은 塩海
畠帶에서는 畜酸을 增量基肥 및 増施하는 것이보
다는 移播後 30日에서 幼瘟期前期에 温育함으로써
太白畠은 15~18%, 眞珠畠은 11~4%의 増收効

![Fig. 19. Effect of soil improvement treatment to sandy soil series: Baegsu series (Content of silicate: 72ppm)]

* Intregated improve: Clay + Compost + Silicate

<table>
<thead>
<tr>
<th>Table 16. Effect of ammonium sulfate in east coastal area.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kind of fertilizer</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Urea</td>
</tr>
<tr>
<td>Ammonium sulfate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 17. Variation of yield according to different phosphate application method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal application</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>70</td>
</tr>
</tbody>
</table>

* After transplanting
3. 土壌堆肥

東海岸地域의 砂質土이 38%나 되어 이들 砂質
堆肥은 質量堆肥에 비하여 風害을 많이
받아 熟性이 나빠서 登高이 대략되어 있다. 이러
한 土壌의改良效果을 試験하고 1982년~83년
兩季年間 太白과三南証を 供試하여 그림 19와
같이 硅酸, 堆肥, 粘土(山赤土) 등 綜合改良處理
을 하였던 結果 10a當 硅酸 300kg 施用畑에서
는 5%, 綜合改良處理에서는 15%의 增収가 가시였다.
本 試験에서는 水分障害型風害은 일어나지 않았으나
樹木예는 Fohn風害의 常習地에서는 增収을 輕減
하는 方法으로서 硅酸施用이效果의이라고 하였
고, 硅酸은 植身의 孔流細胞を存在하여 氣孔
의活動を促進하여 增収에 대한 抵抗性을 가지
며 稲體의 水分stress을緩和하는것이라고報告하
었다.

4. 防風網의 設置

가. 防風網과의 環境改善效果

1) 風速의 減速效果

東海岸冷潮風地域에서 防風網의 設置에 따른 減
風效果를 알기 위하여 1983년부터 1989년까지 7
個年間 8월 1日부터 9月 10일까지 40日間 假設用
風速計로 防風網이 設置된 곳으로부터 1m, 10
m, 20m 地點에서 50cm 이내로 测定한 結果는
表 18에서와 같이 風速이 隊べ防風網設置畑에
는 1m地點에서 24%, 10m地點에서 35%, 20m
地點에서 28% 風速效果가 있었으며, 이와같은
效果는 防風網 높이의 10倍 距離까지 있었다. 이
에 関한 研究는 1980年 日本 北海道試験場18에서
防風林 造成으로 防風林으로부터 50m 距離에서
風速を 50~60% 減速시키며 그 效果是 防風網
高さ의 10~15倍까지 있다고 하였으며 無風27,37
,泊功11~11等은 防風網設置로 防風網으로부터
10m地點에서 40~50% 減風되었다는 報告와一致
する傾向이다. 이와같은 結果는 大量은 큰 風어
リ式 気圏が 如しく 形成され吹く 風に 防風網
が 因果的作用 砂礫物に 吹きつけて도 増収作業으로
分散され 風の 威力を 薄化시킬 수가 있기 때문
이다.

2) 氣溫, 地温, 水溫 上昇效果

防風網設置によって 気温, 地温 및 水温이 의지
는影響을 야기하여 防風網設置畑g 8月 1일
부터 9月 10日까지 40日間で 最低最低気温が
地中土温計을 設置하여 調査한 結果는 表 19에서
見える 雄風畑에 比べ 防風網設置畑が 最高気温
이 8℃, 最低気温 0.7℃, 平均気温이 0.5℃ 上
昇效果가 있었고 또한 水温도 最高水温이 0.2℃,
最低水温 0.6℃, 平均水温 0.5℃ 上昇되었으며,10
時 現在 地温도 0.4℃ 上昇效果가 있었다. 이
와같은 結果는 泊功11, 無風27,37이 防風網設置
으로 気温を 0.5~1.0℃ 上昇시키고 地温を 1.
0~1.5℃ 上昇시키며 地温, 気温, 増溫, 増温의
印す 및 蒸発散熱 減少, 日射, 照明等의 微気象
이 調節하는 效果가 있었다는 報告와一致する
傾向이다.

나. 生育促進 및 增収效果

1) 防風網 設置方法

東海岸地域에 風害가 誘発시키는 바람의 種類
는 高温乾燥 및 偏西風에 依한 水分障害型風害이
及び 冷潮風에 依한 生育遅延型冷害이므로
偏西冷潮風가 偏西乾燥風의 風害を 枯死 これ에
風向別로 防風網設置하였다 結果 表 20과 같이
偏西冷潮風 防風效果は 13%, 偏西乾燥風 防風
效果は 11% 兩種を 處方 風害箇所에서는 20%의

Table 18. Effect of wind-break net on reducing

<table>
<thead>
<tr>
<th>Item</th>
<th>Distance from wind-break net (m)</th>
<th>Control</th>
<th>10m</th>
<th>20m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind velocity</td>
<td></td>
<td>5.4</td>
<td>4.1</td>
<td>3.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Index (%)</td>
<td></td>
<td>100</td>
<td>76</td>
<td>65</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 19. Effect of wind-break net on air, water and soil temperature (1983-1989)

<table>
<thead>
<tr>
<th>Item</th>
<th>Air temp. (℃)</th>
<th>Water temp. (℃)</th>
<th>Soil temp. (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>33.4</td>
<td>19.7</td>
<td>26.9</td>
</tr>
<tr>
<td>Wind-break net</td>
<td>34.2</td>
<td>20.4</td>
<td>27.4</td>
</tr>
<tr>
<td>Difference</td>
<td>+0.8</td>
<td>+0.7</td>
<td>+0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installation methods of wind-break nets</th>
<th>Heading date</th>
<th>Culm length (cm)</th>
<th>Panicles per hill (No.)</th>
<th>Spikelets per panicle (No.)</th>
<th>Grain fertilizer (%)</th>
<th>Yield (kg/10a)</th>
<th>Yield index</th>
</tr>
</thead>
<tbody>
<tr>
<td>control plot</td>
<td>Aug. 26</td>
<td>74.9</td>
<td>13.5</td>
<td>78</td>
<td>72.3</td>
<td>389</td>
<td>100</td>
</tr>
<tr>
<td>Installed plot with wind-break net against cold wind from sea</td>
<td>Aug. 24</td>
<td>81.6</td>
<td>14.7</td>
<td>87</td>
<td>78.6</td>
<td>440</td>
<td>113</td>
</tr>
<tr>
<td>Installed plot with wind-break against westries</td>
<td>Aug. 24</td>
<td>82.2</td>
<td>14.6</td>
<td>91</td>
<td>79.2</td>
<td>431</td>
<td>111</td>
</tr>
<tr>
<td>Installed plot with wind-break against cold wind from sea and westries</td>
<td>Aug. 21</td>
<td>78.2</td>
<td>13.9</td>
<td>86</td>
<td>82.1</td>
<td>466</td>
<td>120</td>
</tr>
</tbody>
</table>

2) 防風網 設置時期

防風網의 設置時期 風速이 減速되고 氣溫、地溫、
水溫의 上昇 및 蒸發散量의 減少、日射、日照等
의 微氣象을 調節하는 效果가 있어 表 21의 防風
網 設置時期別 葉生育狀況을 보면 無風區에
比해 防風網設置區가 葉生育이 促進되어 出穗期
가 1～2日 短縮하였고、穗長、株苗數、穀粒穀花
數 및 穀實比率이 顯著하게 增加되었다。防風網
設置時期別 防風效果는 最高分離期 9%，幼穀形
成期 11%，穀實期 20%，出穗期 13% 增收效果
가 있었다。 따라서 이 地帶의 防風網 設置時期는
強風의 發生頻度가 高은 生殖生長期(8月 1日)에
設置하는 것이 效果의이이다。

3) 防風網의 適正網目 및 農家實證

防風網 網目別 收量을 調査한 結果는 그림 20과

| Fig. 20. Yield variation as affected by different mesh sizes of wind break net (1988-1989) |
| Mesh size of the net (cm) |
| Control | 3×3 | 1×1 | 0.5×0.5 | 0.25×0.25 |
| 100 | 104 | 107 | 110 | 107 |

Table 21. Rice growth and grain yield affected installation stage of wind-break net in 1985.

<table>
<thead>
<tr>
<th>Installation stage of wind-break net</th>
<th>Heading date</th>
<th>Culm length (cm)</th>
<th>Panicles per hill (No.)</th>
<th>Spikelets per panicle (No.)</th>
<th>Grain fertility (%)</th>
<th>Yield (kg/10a)</th>
<th>Yield index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Aug. 23</td>
<td>80.6</td>
<td>13.1</td>
<td>82</td>
<td>58.0</td>
<td>332</td>
<td>100</td>
</tr>
<tr>
<td>Maximum tillering stage</td>
<td>Aug. 22</td>
<td>81.6</td>
<td>13.2</td>
<td>91</td>
<td>60.3</td>
<td>361</td>
<td>109</td>
</tr>
<tr>
<td>Panicle formation stage</td>
<td>Aug. 21</td>
<td>83.7</td>
<td>13.8</td>
<td>91</td>
<td>62.5</td>
<td>370</td>
<td>111</td>
</tr>
<tr>
<td>Booting stage</td>
<td>Aug. 21</td>
<td>82.6</td>
<td>13.6</td>
<td>88</td>
<td>63.4</td>
<td>397</td>
<td>120</td>
</tr>
<tr>
<td>Heading stage</td>
<td>Aug. 23</td>
<td>83.0</td>
<td>13.5</td>
<td>86</td>
<td>59.0</td>
<td>374</td>
<td>113</td>
</tr>
</tbody>
</table>

- 424 -
라서 동해안 총하수지대의 방풍경제 효능은 원목이 풍오수류·기온·지형·토양의 상호작용에 따라 0.5x0.5 cm가 얕았다고 생각된다. 또한 동해안 풍은 총하수지대의 온도차는 토양의 풍이 이동이 빠르게 변화되어 단기적인 변화가 필요함으로써 방풍경의 효과는 온도에 유연한 변화를 스테로화시킨다. 염소성 육식물이 높여진 것이 높아진 것이 높아져 태우는 반응을 높입시킨다.

다. 죽림 방충 및 환경상의 효과

바람 "VERA"호(1986년) 이후 방풍경의 효과를 얻기 위해서는 죽림 조성을 위해 방풍경의 환경상의 효과가 입증되었다. 또한 방풍경의 효과도 원목이 있는 토양의 토양 환경상의 효과가 입증된다.

Table 22. Effect of wind-break net on occurrence of dead leaves in 1986.

<table>
<thead>
<tr>
<th>Item</th>
<th>1st leaf from top</th>
<th>% of dead leaves</th>
<th>2nd leaf from top</th>
<th>% of dead leaves</th>
<th>Leaf weight (g/hill)</th>
<th>% of dead leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Dead</td>
<td>Total</td>
<td>Dead</td>
<td>Fresh</td>
<td>Dead</td>
</tr>
<tr>
<td>Control</td>
<td>21.8</td>
<td>3.6</td>
<td>16.4</td>
<td>4.1</td>
<td>14.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Wind-break net</td>
<td>23.0</td>
<td>2.8</td>
<td>12.4</td>
<td>3.2</td>
<td>10.8</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Perfect kernel (%)</th>
<th>Irregular kernel (%)</th>
<th>Green kernel (%)</th>
<th>Opaque kernel (%)</th>
<th>Broken kernel (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>76.1</td>
<td>1.8</td>
<td>12.8</td>
<td>8.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Wind-break net</td>
<td>85.4</td>
<td>0.6</td>
<td>9.7</td>
<td>3.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Fig. 21. Yield variation as affected by number of seedlings per hill by the installation of wind break net at farm paddy field (1986-1987).
Table 24. Effect on the yield according as spraying the water after occurrence of white head and glume discoloration.

<table>
<thead>
<tr>
<th>Wind damage</th>
<th>Water spray</th>
<th>Ratio of white head</th>
<th>Yield (kg/10a)</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White head</td>
<td>Non</td>
<td>41</td>
<td>225</td>
<td>76.69**</td>
</tr>
<tr>
<td></td>
<td>Treat</td>
<td>38</td>
<td>257</td>
<td>114</td>
</tr>
<tr>
<td>Glume head</td>
<td>Non</td>
<td>49</td>
<td>341</td>
<td>8.61</td>
</tr>
<tr>
<td>Discoloration</td>
<td>Treat</td>
<td>42</td>
<td>370</td>
<td>109</td>
</tr>
</tbody>
</table>

Amount of water spray : 200 l/10a

일을것으로 판단된다.

摘要

우리나라 東海岸地帶의 太白山脈이 東西로 면
처이고 海岸을 가로쳐서 氣候의 變化가 多様한
同時에 風害을 입기 쉬운 環境에 놓어있다. 이
地帶에 風害을 일으키는 바람의 種類는 太白山脈
을 넘어면서 쎄(Föhn) 現象에 依해 上昇気流
된 高溫乾燥한 偏西風에 依해 白穂, 莖葉의 折
傷, 撒過傷, 脱水害, 變色粒, 脫粒, 倒伏 等의
水分障害型風害과 寒冷多霧한 오후스트낮기
이 發
逢하면 冷潮風이 普하며 夏季 低溫現象이 일어나
서 生育遅延, 枝梗 및 莖葉의 退化, 變熟障害 等
이 發生되어 東海岸地帶를 中心으로 全國에서
84,532/M/T의 收量減少을 가처去了 큰 問題地域
으로 대두되어 있다.

본論文은 우리나라 東海岸地帶의 冷潮風被害常
習地 6,160ha에 對한 風害簡単對策를 樹立고자
1982년부터 1989년까지 8個年間 慶北 順德, 蕊珍
地方에서 慶北農村振興院과 耕作作物試験場 顺德
出張所에서 実施된 品種選抜, 栽培時期, 施肥法
改善, 農土培養, 防風網設置 等의 試験成績들을
検討한 결과 決산 결과를 얻었기에 今後 이地
帶의 風害簡単對策 資料로 提供저자 한다.

1. 東海岸冷潮風地帶의 1954년부터 1989년까지
36年동안 強風發生頻度는 8月 10일부터 9月 10日
사이에 놓아 東海岸의 水稻安全出穂限界는 8月
10日이 안산하다고 생각된다.

2. 이地帶에 主로 風害를 誘發시키는 바람의 種類는 太白山脈을 超여 오면서 쎄(Föhn) 現象에
依한 高溫乾燥한 偏西風과 海洋에서 內陸으로 부
는 寒冷多霧한 冷潮風이었으며 稻作期間中 發生
頻度는 各各 25%였다.

3. 颯風來襲의 危險時期(8月 10日~9月 10日)

으로 回避할수 있도록 出穂期를 달리하여 3~4品種
을 筆地別으로 按配하거나 有事時에 被害を 分散보
록 하는것이 第 1次의 인 對策이 됨이다.

4. 東海岸地帶에서 收量 生産期間(40日間)의 最
佳登熟温度(22℃)와 最大気象 生産力으로 보
最適出穂期는 8月 10일이며, 移検에서 出穂期까지
의 有效積算温度(GDD)를 利用한 最適 移検期는
早生種이 6月 10日, 中生種이 5月 20日, 晚生種
이 5月 10일이었다.

5. 東海岸冷潮風地帶는 砂質畑(38%), 未熟畑
(28%)로서 低位生産畑이 많고 地下水位이 높아
垂直排水가 不良하여 畑面水温이 低아 尿素肥料
은 分解가 빠르고 肥効가 늦어서 生育遅延 및
不稔의 誘發原因이 되고 特히 遇雨하면 稻熟病を
激增하게 되므로 硫酸を 施用하는것이 效果의
이다.

6. 東海岸冷潮風地帶는 普 生育初期에 畑面水温
이 低아 硫酸可溶性細菌の 活動이 微弱하여 土壤
役元作用이 発達하지 못하여 風が 吸収 利用한
可溶性硫酸含量이 不足하여 硫酸은 全量
基肥 또는 増施하는것보다 移検後30日에서 幼穂
形成期に 追肥하는것이 效果의
이다.

7. 이地帶는 砂質畑(38%)이 많아 普通畑이나
畑東側에 比하여 風害를 받다熟が 비난이 低약
熟이 低下되므로 硫酸堆肥, 山赤土 等의 総合改
良處理를 하면 效果가 크다.

8. 東海岸冷潮風地帶에 防風網을 設置하면 風
速減緩效果(30%)가 顕著 氣溫, 地温, 水温 等의
微気象을 調節하는 效果가 있어 生育促進, 白穂
及び 變色粒 減少, 枝梗防止, 籠穂向上, 收量増加
等의 效果가 顯著하였다.

9. 防風網の 材料는 化学繊維로 된 防風網과 防
鳥網이며 設置方法은 方鳥網を 園場들에 2m
上に取って 고위에 方鳥網を 얽어 偏西乾燥風과
偏東冷潮風을 同時に 防風하여 20%의 増収效果
引用文献

38. 中山稔. 1980. 畑作水田の防風網効果. 北海道農試報告 1: 1–89.
42. ______. 1965. 水稻冷害の診断とその防き方. 農業及園藝 40: 1073–1076.
44. ______. 1961. 稻稲の風被害に関する生理学的研究. 農業技術 A8: 100–106.