• Title/Summary/Keyword: inverter-based

Search Result 1,292, Processing Time 0.029 seconds

Design of Improved UI of Automatic Parking Management System using License Plate Recognition (번호판 인식을 통한 자동 주차관리 시스템의 개선된 UI 설계)

  • Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1083-1088
    • /
    • 2014
  • Recently, due to advances in both imaging technology and ICT, various types of image processing services became available and the application services of these two technologies are diversifying. Recognition of vehicle license plates is used in places where vehicle information is needed such as in parking management. However, existing systems have economic disadvantages like issuing parking tickets and attaching unnecessary equipment. In order to solve these problems, we designed and implemented automatic parking management system through recognition of vehicle license plates by using emguCV that is based on OpenCV. Additionally, we designed improved UI to handle the entire parking management situation which include information such as details of each parking vehicle, parking time and remaining parking spaces without screen movement. This improved UI is implemented with the use of WPF which is the latest technology in user program development. The emguCV used in this paper showed the most optimized performance in Intel based environment. With it, we obtained the result of within 0.5 seconds of recognition processing time and over 90% of recognition rate. Through improved UI, the manager could both simply and intuitively manage the entire system.

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

Development of a Powertrain for 20kW Experimental Electric Vehicle Using Surface Mounted Permanent Magnet Synchronous Motor (표면 부착형 영구자석 동기 전동기를 이용한 20kW급 실험용 전기자동차 파워트레인 개발)

  • Park, Sung-Hwan;Lee, Jeong-Ju;Son, Jong-Yull;Lee, Young-Il
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.240-248
    • /
    • 2017
  • This paper describes the development of a powertrain for a 20 kW experimental electric vehicle using a surface-mounted permanent magnet synchronous motor (SPMSM) and its application to a test vehicle. Two 10 kW SPMSMs are used in the powertrain, and two-level inverters are developed by using IGBTs to derive these motors. To control the SPMSM, a control board based on a TMS320F28335 DSP module, which has fast arithmetic function and floating point operator, is used. We develop a 100 V/40 A battery pack, which includes $32{\times}4$ LiFePO4 battery cells using commercial BMS. A commercial on-board charger with 220 V (AC) input and 100 V (DC) and 18 A output is used to charge the battery pack. The performance of the developed vehicle, such as acceleration availability, maximum speed, and maximum power, is estimated based on vehicle dynamics and verified through experiments.

Optimal Selection of Arm Inductance and Switching Modulation for Three-Phase Modular Multilevel Converters in Terms of DC Voltage Utilization, Harmonics and Efficiency

  • Arslan, Ali Osman;Kurtoglu, Mehmet;Eroglu, Fatih;Vural, Ahmet Mete
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.922-933
    • /
    • 2019
  • The arm inductance (AI) of a modular multilevel converter (MMC) affects both the fault and circulating current magnitudes. In addition, it has an impact on the inverter efficiency and harmonic content. In this study, the AI of a three-phase MMC is optimized in a novel way in terms of DC voltage utilization, harmonics and efficiency. This MMC has 10 submodules (SM) per arm and the power circuit topology of the SM is a half-bridge. The optimum AI is adopted and verified in an MMC that has 100 SMs per arm. Then the phase shift (PS) and phase disposition (PD) pulse width modulation (PWM) methods are investigated for better DC voltage utilization, efficiency and harmonics. It is found that similar performances are obtained for both modulation techniques in terms of DC voltage utilization. However, the total harmonic distortion (THD) of the PS-PWM is found to be 0.02%, which is slightly lower than the THD of the PD-PWM at 0.16%. In efficiency calculations, the switching and conduction losses for all of the semiconductor are considered separately and the minimum efficiency of the 100-SM based MMC is found to be 99.62% for the PS-PWM and 99.64% for the PD-PWM with the optimal value of the AI. Simulation results are verified with an experimental prototype of a 6-SM based MMC.

Fault-tree based reliability analysis for bidirectional converter (고장나무를 이용한 양방향 컨버터의 신뢰성 분석)

  • Heo, Dae-ho;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.254-260
    • /
    • 2019
  • The failure rate of bidirectional dc-to-dc converter is predicted through the failure mode and effect analysis (FMEA) and the fault-tree analysis (FTA) considering the operational risk. In order to increase the driving voltage of the electric vehicle efficiently, the bidirectional converter is attached to the front of the inverter. It has a boost mode for discharging battery power to the dc-link capacitor and a buck mode for charging the regenerative power to the battery. Based on the results of the FMEA considering the operating characteristics of the bidirectional converter, the fault-tree is designed considering the risk of the converter. After setting the design parameters for the MCU for the electric vehicle, we analyze the failure rate of the capacitor due to the output voltage ripple and the inductor component failure rate due to the inductor current ripple. In addition, we obtain the failure rate of major parts according to operating temperature using MIL-HDBK-217F. Finally, the failure rate and the mean time between failures (MTBF) of the converter are predicted by reflecting the part failure rate to the basic event of the fault-tree.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

A Novel Parameter-independent Fictive-axis Approach for the Voltage Oriented Control of Single-phase Inverters

  • Ramirez, Fernando Arturo;Arjona, Marco A.;Hernandez, Concepcion
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.533-541
    • /
    • 2017
  • This paper presents a novel Parameter-Independent Fictive-Axis (PIFA) approach for the Voltage-Oriented Control (VOC) algorithm used in grid-tied single-phase inverters. VOC is based on the transformation of the single-phase grid current into the synchronous reference frame. As a result, an orthogonal current signal is needed. Traditionally, this signal has been obtained from fixed time delays, digital filters or a Hilbert transformation. Nevertheless, these solutions present stability and transient drawbacks. Recently, the Fictive Axis Emulation (FAE) VOC has emerged as an alternative for the generation of the quadrature current signal. FAE requires detailed information of the grid current filter along with its transfer function for signal creation. When the transfer function is not accurate, the direct and quadrature current components present steady-state oscillations as the fictive two-phase system becomes unbalanced. Moreover, the digital implementation of the transfer function imposes an additional computing burden on the VOC. The PIFA VOC presented in this paper, takes advantage of the reference current to create the required orthogonal current, which effectively eliminates the need for the filter transfer function. Moreover, the fictive signal amplitude and phase do not change with a frequency drift, which results in an increased reliability. This yields a fast, linear and stable system that can be installed without fine tuning. To demonstrate the good performance of the PIFA VOC, simulation and experimental results are presented.

Damage Effect and Delay Time of CMOS Integrated Circuits Device with Coupling Caused by High Power Microwave (도선에 커플링 되는 고출력 전자파에 의한 CMOS IC의 피해 효과 및 회복 시간)

  • Hwang, Sun-Mook;Hong, Joo-Il;Han, Seung-Moon;Huh, Chang-Su
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.597-602
    • /
    • 2008
  • This paper examines the damage effect and delay time of CMOS integrated circuits device with coupling caused by high power microwaves. The waveguide and magnetron was employed to study the influence of high power micro-waves on CMOS inverters. The CMOS inverters were composed of a LED circuit for visual discernment. Also CMOS inverters broken by high power microwave is observed with supply current and delay time. When the power supply current was increased 2.14 times for normal current at 9.9 kV/m, the CMOS inverter was broken by latch-up. Three different types of damage were observed by microscopic analysis: component, onchipwire, and bondwire destruction. Based on the results, CMOS inverters can be applied to database to elucidate the effects of microwaves on electronic equipment.

Distribution Feeder Aspects of a Variable Speed Wind Turbine in Voltage Fluctuations and Harmonics (가변속 풍력터빈이 연계된 배전선로의 전압변동 및 고조파 영향)

  • 김슬기;김응상
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.309-319
    • /
    • 2003
  • The main purpose of this paper is to present a simulation model for assessing the impacts of a variable speed wind turbine (VSWT) on the distribution network and perform a simulation analysis of volt-age profiles and harmonics along the wind turbine installed feeder using the presented model. The modeled wind energy conversion system consists of a fixed pitch wind turbine and a permanent-magnet synchronous generator, in which a controllable power electronics inverter performs variable speed operation and reactive power output control. Impact analysis on voltage profiles and harmonics of a VSWT-installed distribution feeder is addressed and simulated in terms of steady state and dynamic behaviors. Various capacities and different modes of variable speed wind turbines are simulated and investigated. Case studies demonstrate how feeder voltages are influenced by capacity and control modes of wind turbines and changes in wind speed under various network conditions, and show harmonic impacts on the feeder. Modeling and simulation analysis is based on PSCAD/EMTDC a software package.