• Title/Summary/Keyword: inverse learning

Search Result 205, Processing Time 0.035 seconds

Design of an Iterative Learning Robot Controller Using Parameter Estimation (파라미터 추정방법을 이용한 로보트 반복학습제어기의 설계)

  • ;;Zeungnam Bien
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.393-402
    • /
    • 1990
  • An iterative learning contol method is presented for a class of linear periodic systems, in which a parameter estimator of the system together with an inverse system model is utilized to generate the control signal at each iteration. A convergence proof is given and two numerical examples are illustrated to show the validities of the algorithm. In particular, it is shown that the method is useful for the continuous path control of robot manipulators.

  • PDF

Neural Networks which Approximate One-to-Many Mapping

  • Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41.5-41
    • /
    • 2001
  • A novel method is introduced for determining the weights of a regularization network which approximates one-to-many mapping. A conventional neural network will converges to the average value when outputs are multiple for one input. The capability of proposed network is demonstrated by an example of learning inverse mapping.

  • PDF

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

Determining Feature-Size for Text to Numeric Conversion based on BOW and TF-IDF

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.283-287
    • /
    • 2022
  • Machine Learning is the most popular method used in data science. Growth of data is not only numeric data but also text data. Most of the algorithm of supervised and unsupervised machine learning algorithms use numeric data. Now it is required to convert text data into numeric. There are many techniques for this conversion. Researcher confuses which technique is best in what situation. Here in proposed work BOW (Bag-of-Words) and TF-IDF (Term-Frequency-Inverse-Document-Frequency) has been studied based on different features to determine best method. After experimental results on text data, TF-IDF and BOW both provide better performance at range from 100 to 150 number of features.

Automated Analysis Approach for the Detection of High Survivable Ransomware

  • Ahmed, Yahye Abukar;Kocer, Baris;Al-rimy, Bander Ali Saleh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2236-2257
    • /
    • 2020
  • Ransomware is malicious software that encrypts the user-related files and data and holds them to ransom. Such attacks have become one of the serious threats to cyberspace. The avoidance techniques that ransomware employs such as obfuscation and/or packing makes it difficult to analyze such programs statically. Although many ransomware detection studies have been conducted, they are limited to a small portion of the attack's characteristics. To this end, this paper proposed a framework for the behavioral-based dynamic analysis of high survivable ransomware (HSR) with integrated valuable feature sets. Term Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful features from the analyzed samples. Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to develop and implement a machine learning-based detection model able to recognize certain behavioral traits of high survivable ransomware attacks. Experimental evaluation indicates that the proposed framework achieved an area under the ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate that the proposed framework can detect high survivable ransomware in the early stage accurately.

Image Filtering Method for an Effective Inverse Tone-mapping (효과적인 역 톤 매핑을 위한 필터링 기법)

  • Kang, Rahoon;Park, Bumjun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2019
  • In this paper, we propose a filtering method that can improve the results of inverse tone-mapping using guided image filter. Inverse tone-mapping techniques have been proposed that convert LDR images to HDR. Recently, many algorithms have been studied to convert single LDR images into HDR images using CNN. Among them, there exists an algorithm for restoring pixel information using CNN which learned to restore saturated region. The algorithm does not suppress the noise in the non-saturation region and cannot restore the detail in the saturated region. The proposed algorithm suppresses the noise in the non-saturated region and restores the detail of the saturated region using a WGIF in the input image, and then applies it to the CNN to improve the quality of the final image. The proposed algorithm shows a higher quantitative image quality index than the existing algorithms when the HDR quantitative image quality index was measured.

Camera-based Music Score Recognition Using Inverse Filter

  • Nguyen, Tam;Kim, SooHyung;Yang, HyungJeong;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.10 no.4
    • /
    • pp.11-17
    • /
    • 2014
  • The influence of acquisition environment on music score images captured by a camera has not yet been seriously examined. All existing Optical Music Recognition (OMR) systems attempt to recognize music score images captured by a scanner under ideal conditions. Therefore, when such systems process images under the influence of distortion, different viewpoints or suboptimal illumination effects, the performance, in terms of recognition accuracy and processing time, is unacceptable for deployment in practice. In this paper, a novel, lightweight but effective approach for dealing with the issues caused by camera based music scores is proposed. Based on the staff line information, musical rules, run length code, and projection, all regions of interest are determined. Templates created from inverse filter are then used to recognize the music symbols. Therefore, all fragmentation and deformation problems, as well as missed recognition, can be overcome using the developed method. The system was evaluated on a dataset consisting of real images captured by a smartphone. The achieved recognition rate and processing time were relatively competitive with state of the art works. In addition, the system was designed to be lightweight compared with the other approaches, which mostly adopted machine learning algorithms, to allow further deployment on portable devices with limited computing resources.

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

Nonlinear System Control for DNP (동적 신경망에 의한 비선형 시스템 제어)

  • Roh, Yong-Gi;Ryu, In-Ho;Cho, Hyeon-Seob;Oh, Seong-Kwon;Jang, Seong-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.890-893
    • /
    • 1999
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are demonstrate the effectiveness of the Proposed learning using the DNP.

  • PDF