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In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated

coordinate transformations. These are required excessive computation and the singularity of the image jacobian

should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for

tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in

motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In

order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving

object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks.

Computer simulation results are presented to demonstrate the performance of this visual servoing

Keywords

1. Introduction

In the field of robotics, to control the pose of the manipulator's
end-effector a lot of visual servoing technique have been studied..
Generally classified into two categories;
position-based and feature based visual servoing. Sanderson and
Weiss introduced an important distinction between these two. In
position-based visual servoing 3 dimensional informations from the
geometric model of the object is refered to the desired positions.
In this case, because actual position data should be estimated from
the 2 dimensional image data there are

visual servoing is

many difficultics such as
noise and parameter variation in real time implementation{l1].

In image-based visual servoing only image features are used to
determine the pose of the robotic manipulator, so the pose
estimation process does not need. This enables the controller to be
robust to the noise, but remains a problem to determine the relative
pose of the end-effector.

It is known that there exists a nonlinear mapping between the
image plane and manipulator's 3 dimensional space. For this
nonlinear mapping the image jacobian which transform the features
and its variations to the desired end-effector motion should be
derived. In image jacobian based visual servoing, generally, inverse
should be calculated by coordinate
transformations and these are required excessive computation and
the singularity of the image jacobian should be considered. When a
moving object is concerned, these coordinate transformation can
hardly be calculated and very semsitive to noise and system
parameter variations.

Jjacobian complicated
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Therefore instead of analytically deriving the closed form of such
a nonlinear mapping, several researchers have discussed possibilities
for the application of artificial neural networks. Miller proposed a
learning control approach that utilizes a CMACS neural network
model[2]. And Hashimoto et al. proposed a self-organizing visual
servo system based on the feedforward type of the two neural
networks to learn the feature jacobian[3]. But in these studies it is
assumed that the object is static and known because the neural
network should be trained off-line.

With regard to the moving object, Houshangi[4] developed a
system to grasp targets exhibiting planar, translational motion
utilizing a static camera and pre-computed manipulator poses for
the start position and the grasp position. And Kimura et al
proposed a system capable of catching a free flying ball. And some
researches are based on kalman filter and
observer{5][6](7].

In this paper, we propose on-line visual servoing for tracking and
grasping a moving object using a artificial neural network and
fuzzy inference. To implement on-line leaming we adopt fuzzy
inference based reinforcement learning(FIRL) of dynamic recurrent
neural networks(DRNN){8], and we use the kalman filter to
estimate the moving object's parameters in successive image frames.
The architecture of the proposed visual servoing is illustrated in Fig. 1.

nonlinear

2. Prediction of moving object features

When the moving object is concerned in visual servoing, the
system is required to be able to adapt the changing environment



Reference
Feature

Fig. 1 Control system architecture

and especially the object's motion parameters on the image plane
should be estimated. So we use kalman filter for the estimation of
moving object kalman filter
stochastic filter is used to estimate the motion parameters, the state

parameters. The as an optimal
vector of the moving object with the unknown dynamics in
successive image frames.

To apply the kalman filter method to the estimation of the
moving object's parameters, the dynamic model of the motion and
the proper output equations must be defined first. We assumed that
the object was moving with constant  acceleration. in robotic
manipulator's workspace. Then we can describe the discrete dynamic

equation and measurement equation as follows

X(k+1)=A- - X(k)+B- w(k) N
R =C- X(k)+ v(k) @

where X= [x x 22]7 , (k) is a measurement vector, and

w(k) and ¢(k) are assumed to be zero mean gaussian noises

with covariance W, V respectively. And by the constant
acceleration ‘assumption
T T
1 T, 5 5
2 2
A=01 T,|.B=| T,|.C=[10 0]
00 1 1
where T, is sampling time.

Then the standard recursive equations for the discrete kalman filter
are stated by

XB=A-Rk-1D+G- (AR -C-A- X(k—a)) 3
G=pP-CT- V! @

where X(k) is updated state vector and G is kalman gain. And
this kalman gain is obtained recursively by the Riccati equation.

AP+ PAT+ BWBT— PCTV 'CP=0 ®)

From these equations we can estimate simply the moving object

position, x,, on the image plane as follows

T

T
; ] . R(B) ©

xX,= [1 T,

This predicted value is refered to the desired features and then
image error is fed to neuro-fuzzy controller. Next section describes
the learning algorithm of a artificial neural network using this
image error to ouput the manipulator's joint angles.

713

3. Manipulator control by artificial neural network

Because the neural network can cope with nonlinear mapping
without analytically deriving the closed form, neural network based
robot control is widely studied.

However, to implement such supervised learning controllers, a lot
of training exercise should be used to train the network to
approximate the desired transformation. In Miller's CMACS neural
network[2] and a self-organizing visual servo system proposed by
Hashimoto et al.[3] neural networks should be trained over the
whole work space to learn the feature Jacobian between the image
features of the object and the joint angles for the desired position
and orientation of the manipulator end-effector. And in the case of
the moving object the training data can not be obtained simply and
the convergency of the back propagation networks to global
minimum is not generally guaranteed. Thus, the method seems to
be very difficult to practically apply to a real task. So we
introduce reinforcement leaming of recurrent neural networks to
visual servoing as on-line learning algorithm

3.1 Reinforcement learning

The supervised learning needs teaching signal from the exact
modeling of the environment, but the reinforcement leamning is
generally unsupervised learning algorithm, finding the state-action
rule or action generating strategy maximizing reward for the
controller or agent's action under dynamically changing environment.

But as is often the case with real world, there is no immediate
reinforcement until a goal state is reached. This requires improving
long-term consequences of an action or of a strategy for performing
actions, in addition to short-term consequences.

This problem is known as temporal credit assignment problem. A
widely studied approach to this problem is to leam an internal
evaluation function that is more informative than the evaluation
function implemented by the external critic. The representative
methods to this problem are actor-critic architecture by Sutton's
temporal difference(TD) method[9] and Watkin's Q-learning{10].

3.2 FIRL of DRNN

The procedure of this algorithm is that a robot takes an action
generated by neural networks, and this action is evaluated by the
fuzzy inference engine. Then using the evaluated value, internal
reinforcement in Fig. 2, the neural networks' weights are updated so
that the robot learn and adapt the environment.

Input
States _ [Dynamic ecurrentl Outputs
~| Neural Networks -
Internal
Reinforcement
External ~ | Fuzzy Inference
Reinforcement Engine

Fig. 2 Block diagram of FIRL



Generally  actor-critic  architecture used feedforward neural
networks for generating the internal reinforcement. But we introduce
the fuzzy inference engine as critic, whose input variables are
composed state variables, the output of the action network, and
external reinforcement, and internal reinforcement is its output.

In fuzzy logic, there are three types of fuzzy reasoning, the first
is Mamdani's minimum fuzzy implication rule, the second is
Tsukamoto’s method with linguistic terms as monotonic membership
functions, and the third is that the consequent of a rule is a
function of input linguistic variables.

In this paper, we use Mamdani's fuzzy implication rule, max-min
compositional rule of inference. The rules are expressed qualitatively
and linguistically by fuzzy IF-THEN rules. And center of area
defuzzification method is used.

And the structure of fully connected recurrent neural networks is
in Fig. 3,
stochastic neurons.

shown made up of asymmetrically interconnected
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Fig. 3 Dynamic Recurrent Neural Networks

The output of the i-th neuron is,

y(=Ah{t—1))+A(0) 0
iD= (ww () +x{D)
where Ak (t—1) is net-input to th i-th node at time 1, x(?) is

external input at time # A -) is nonlinear derivative activation
function. And A(0) is gaussian random number with 0 mean and
o as standard deviation. This standard deviation is set properly as
a function of reinforcement signal, r,

1

as expressed in equation (8).

27 >0
o={ 1 r=0 ®
A r<0

This gaussian random variable plays an important role in escaping
local minimum and convergency to the global minimum.
Then the total cost function to be minimized is

()]
(10)

B() =4 SAELD)*
EL)=1Q~r-ydd)

where #({) is internal reinforcement signal at time .

Equation (10) is an appropriate error measure for the output node
k. By the gradient descent method, the change in weights is,
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__OEW® _ dyvi(t)
dwu()==n"G0 = =13 ELD—5, = an
Here let %}(—3 Ezf,, , then z;,, is given by
2= (hi(t= D) [ 81— D + Bwszi(t=D] (12

where &, is a kronecker delta function

Consequently, from the above equations the weight changes to be
applied to each weight w,, in the networks is

dwpD=17- 1) - Z:E,.(t) - 2k (13)

where 7 is a learning constant.

This DRNN composed stochastic unit is used as action networks
and it's weights are updated by the (13) using
reinforcement generated by fuzzy inference engine. And this neural
networks learns the nonlinear mapping between the image error and
desired robotic manipulator motion.

equation

4. Simulation

We applied the proposed visual servoing to RV-M2 robotic
manipulator simulations. It is assumed that the object's initial
position and features are known and all the features are within the
image plane. The object is given as a 50X 50x30mm cubic and
has four feature points. And it is assumed to move in XY plane
with 10mm/sec. The range and maximum speed of RV-M2's 5 joint
angles are illustrated in Table 1.

Table 1 Spec. of RV-M2 manipulator's joint angle

61 62 6, 64 9s
Range [-150° ~150° |-30° ~100° | -120° ~0° |-200° ~20° |-180" ~180°
Max. . . .
140° /sec | 79° /sec | 140° /sec | 163" /sec | 223" /sec
speed
The image error is calculated at each step by
A=Y SV T2+ = 1D (19

where N is the number of feature points, (x] ,y)) is the reference
features, and (x?(#) , ¥?(d) is the predicted feature points on the

image plane. Using this image error and error changes, Je(f), as
precondition and reinforcement as consequent,, we constructed fuzzy
rules. Used fuzzy rules and fuzzy labels are ; VS(Very Small),
SA(SmAIl), MM(MediuM), ML(Medium Large), LA(LArge),
NL(Negative Large), NS(Negative Small), NVS(Negative Very
Small), ZE(ZEro), PVS(Positive Very Small), PS(Positive Small),
PL(Positive Large), VB(Very Bad), BD(BaD), GD(GooD), VG(Very
Good), as shown in Fig. 4 and Fig. 5.
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Fig. 4 Membership functions
de
NL. NS NVS ZE PVS PS PL
VS | BD VG ZE | VB
SA | ZE | VG | GD BD
e MM GD BD VB
ML | VG BD VB
LA | GD BD VB

Fig. 5 Fuzzy rules for learning DRNN

And we used total 30 units recurrent neuwral networks with 8
inputs and 5 outputs. The error variations of four feature points in
direction x and y are the 8 inputs and the outputs are RV-M2's §
joint angles respectively.

The simulation result with 0.02(sec) sampling time plotted image
error versus learning steps is shown in Fig. 6. And Fig. 7 shows
the initial and final state of cubic on the image plane.
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Fig. 6 Variance of image error
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Fig. 7 Initial and final state

5. Conclusions

Neuro-fuzzy controller based visual servoing has been proposed in

this paper. The main components are object parameter prediction

module and fuzzy inference based reinforcement learning of
dynamic recurrent neural networks.
In the simulation results we showed that recurrent neural

networks can be trained on-line using the simple fuzzy rules with
respect to error and error changes.

References

[1] T.Oya, H.Hashimoto, F.Harashima, "Predictive Filtering for
Visual Tracking," [ECON, pp. 1718-1723, 1993

[2] W.TMiller, "Real-Time Applications of Neural Networks for
Sensor Based Control of Robots with Vision," JEEE Trans. on
Systems, Man, and Cybernetics, Vol.19, No.4, 1989

{3] H.Hashimoto, T.Kubota, M.Kudo, F Harashima, "Self-organizing
visual servo system based on neural networks," IEEE Control
Systems Magazine, Vol.12, No.4, pp.31-36, 1992

{4] N. Houshange, "Control of a robotic manipulator to grasp a
moving target using vision," Proc. of the I[EEE International
Conference on Robotics and Automation, 604-609, 1990

[5] L.E.Weiss, A.C.Sanderson, C.F.Neuman, "Dyanmic sensor based
control of robot with visual feedback", IEEE Jounal of Robotics
and Automation, RA-3(50, pp.404-417, 1987

[6] K.Hashimoto, HKimura, "Visual Servoing with Nonlinear
Observer," Proc. of the IEEE International Conference on R&A,
pp.484-489, 1995

[7] K.B.Sim,"Visual Servoing Control of Robotic Manipulator for
Moving Objects," Jounal of the KITE, Vol4, No.2, ppl5-24,
1996

{81 H.BJun, K.B.Sim,
Learning of Dynamic Recurrent Neural Networks," Proc. of the
36th SICE Annual Conference, pp.1083-1088, 1997

[9] R.S. Sutton, "Learning to Predict by the Methods of Temporal
Differences," Machine Learning, vol. 8, pp. 9-44, 1992.

[10) CJCH. Watkins and P. Dayan " Technical Note
Q-Learning," Machine Learning, vol. 8, pp. 279-292, 1992.

"Fuzzy Inference-based Reinforcement

715



